
RL-TR-96-167
Final Technical Report
October 1996

REAL-TIME PARALLEL SOFTWARE
DESIGN CASE STUDY: IMPLEMENTATION
OF THE RT-2DFFT BENCHMARK ON THE
MASPAR MP-X ARCHITECTURE

The MITRE Corporation

David P. Koester and Joseph J. Rushanan

APPROVED FOR PUBLIC RELEASE; D/STRIBUT/ON UNLIMITED.

ro

DT10 QUALITY INSPECTED 1

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-167 has been reviewed and is approved for publication.

APPROVED:
RALPH L. KÖHLER, JR.
Project Engineer

FOR THE COMMANDER: t^Jvu^iU/- H?*^*-
DONALD W. HANSON, Director
Surveillance & Photonics Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/OCSS, 26 Electronic Pky, Rome, NY 13441-4514. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

^^S^^SH^l^IS!^!^ HTTiaiDrLi? eahl*ed ^average 1 hour per response, hdudng the *ne for reviewing Instructions, searching existing data sources,
gaherng and martaining the data needed, and cornplett-ig and reviev^thecolectlcriof Irformaticri Sendcormwrtsreo^
colecttanof Information, hdudhg suggestions for reoucng tMs burden, to Washhgton Headquarters Services, Dtectorate for rtormation Operations andReports, 1215 Jefferson
Davs Highway, Sutej 204, Arfrigton, VA 22202-4302, and to the Office of Managemert arxiBudg» PapentrjrkReducpbn Project (0704-0188), Washngton, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

October 1996

4. TITLE AND SUBTITLE REAL-TIME PARALLEL SOFTWARE DESIGN CASE
STUDY: IMPLEMENTATION OF THE RT-2DFFT BENCHMARK ON THE
MASPAR MP-X ARCHITECTURE

3. REPORT TYPE AND DATES COVERED

Final Mar 94 - Jun 95

6. AUTHOR(S)

David P. Koester and Joseph J. Rushanan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The MITRE Corporation
Center for Air Force C3 Systems
202 Burlington Road
Bedford, MA 01730-1420

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory/OCSS
26 Electronic Pky
Rome, NY 13441-4514

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

C - F19628-94-C-0001
PE - N/A
PR - M0IE
TA - 74
WU - 11

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-96-167

RL Project Engineer: Ralph L. Köhler, Jr./0CSS/(315) 330-2016

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

1 3. ABSTRACT (Maximum 200 words)

The MITRE real-time embedded scalable high performance computing benchmarking concept
was extended and tested by implementing the Real Time-Two Dimensional Fast Fourier
Transform (RT-2DFFT) benchmark on the MasPar MP-X series of massively parallel process-
ors (MPPs). The RT-2DFFT benchmark specifies a symmetric two-dimensional fast fourier
transform (FFT) within a real-time software test bench. The test bench provides the
realistic stimulus for the RT-2DFFT benchmark, including input-output (1/0) from/to on-
board buffers. We developed a single RT-2DFFT implementation, heavily dependent on
available library functions from MasPar, that can examine both benchmark latency speci-
fications: latency equal to the period and latency greater than the period. Through the
use of the MasPar RT-2DFFT benchmark implemenation, we show that the MasPar MPPs can
read two-dimensional data set or input array from an 1/0 buffer, perform the two-dimen-
sional FFT, and write the processed array out to an 1/0 buffer—all within the one
second input array interarrival period specified in the benchmark. If latency is per-
mitted to extend beyond one second, we show that it may be possible to reduce the
machine size by processing sufficient multiple FFTs simultaneously, so that an entire
row of a two-dimensional input array is assigned to a single processor. In this in-
stance, the RT-2DFFT benchmark runs more efficiently, because communications overhead is
minimized during both 1/0 and FFT processing.

14. SUBJECTTERMS Real Time-Two Dimensional Fast Fourier Transform,
real-time embedded scalable high performance computing benchmarking,
massively parallel processors, real-time software test bench.

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 7540-01-280-5500

18. SECURFTY CLASSIFICATION
OF THIS PAGE
UNCLASSTFTF.n

19. SECURrTY CLASSIFICATION
OF ABSTRACT
 TTNr.T.ASgTT-nrr.

15. NUMBER OF PAGES
108

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev 2-89)
Prescrbed by ANSI Std. Z39-11
298-102

ABSTRACT

We extended and tested the MITRE real-time embedded scalable high perfor-
mance computing benchmarking concept by implementing the RT_2DFFT bench-
mark on the MasPar MP-X series of massively parallel processors (MPPs). The
RT_2DFFT benchmark specifies a symmetric two-dimensional fast Fourier transform
(FFT) within a real-time software test bench. The test bench provides the realistic
stimulus for the RT_2DFFT benchmark, including input/output (I/O) from/to on-
board buffers. We developed a single RT_2DFFT implementation, heavily dependent
on available library functions from MasPar, that can examine both benchmark
latency specifications: latency equal to the period and latency greater than the
period. Through the use of the MasPar RT_2DFFT benchmark implementation, we
show that the MasPar MPPs can read a two-dimensional data set or input array
from an I/O buffer, perform the two-dimensional FFT, and write the processed ar-
ray out to an I/O buffer—all within the one second input array inter-arrival period
specified in the benchmark. If latency is permitted to extend beyond one second,
we show that it may be possible to reduce the machine size by processing sufficient
multiple FFTs simultaneously, so that an entire row of a two-dimensional input
array is assigned to a single processor. In this instance, the RT_2DFFT benchmark
runs more efficiently, because communications overhead is minimized during both
I/O and FFT processing.

ACKNOWLEDGMENTS

This work was supported by the United States Air Force Electronic Systems
Center and performed under MITRE Mission Oriented Investigation and Experi-
mentation (MOIE) Project 03957426 of contract F19628-94-C-0001, managed by
Rome Laboratory/OCSS. We wish to thank the MasPar Computer Corporation
and the Northeast Parallel Architectures Center (NPAC) at Syracuse University
for the use of their MasPar machines. All product names, trademarks, and regis-
tered trademarks are the property of their respective holders.

The authors would also like to acknowledge the valuable assistance of Kelly
T. Pickard of the MasPar Computer Corp during code development. We would
also like to express our gratitude for the assistance of the systems support staff
at NPAC—who configured vital input/output subsystems of the NPAC MasPar
so that we could run our RT_2DFFT benchmark implementation.

XI

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

RT_2DFFT Benchmark 1
Test Bench 2
History 3
Summary of Results 4
Organization of this Report 5

2 Fundamental Concepts 7

Real-Time Embedded Processing 7
External I/O 9
Finding the Smallest Machine 10

3 MasPar Description 13

MasPar System Overview 13
Descriptions of the Specific MP-X Machines 15

4 MasPar Test Bench Implementation 19

Software Architecture 19
Hardware Architecture 20

5 MasPar RTJ2DFFT Benchmark Implementation 25

Parallelization Alternatives 25
Implementing Two-Dimensional FFTs 26
MPML FFT Implementation Options 27
Mapping Input Data to the PE Array 29

6 MasPar MPP Architecture Constraints 35

Processor Type 35
Memory 35

PE Array Memory 36

1X1

SECTION PAGE

IORAM Memory
ACU Memory

I/O Subsystem Bandwidth
Conclusion

36
37
38
38

7 MasPar Performance Results for the RT_2DFFT Benchmark 41

Timing Measurements on the MasPar MPP
Parallel Input Comparison
Extended-Duration Tests
Latency-Equals-Period Case
Latency-Greater-than-Period Case
Scalability of Real-Time Embedded Systems

Minimum Machine Size
Sustained Processing Utilization

42
45
46
49
53
57
57
59

8 Conclusions 65

Real-Time Embedded Benchmark Methodology
MasPar RT_2DFFT Benchmark Implementation
Extending the MasPar RT_2DFFT Benchmark Implementation

65
65
68

List of References 71

Appendix A RT_2DFFT: Real-Time Symmetric Two-Dimensional
FFT Benchmark Specification

Appendix B MasPar Index-Bit Permutations

Appendix C MasPar MP-1 RT_2DFFT Benchmark Data

73

79

83

IV

SECTION PAGE

Appendix D MasPar MP-2 RT_2DFFT Benchmark Data 89

Glossary 93

LIST OF FIGURES

FIGURE PAGE

1 MasPar Test Bench Software Architecture 21

2 MasPar Test Bench Hardware Architecture 22

3 Mapping One or More Input Arrays onto the PE Array 29

4 Conceptual Two-Dimensional Input Array 30

5 Multiple Two-Dimensional Input Arrays 31

6 Cut-and-Stack for Multiple Processors per Data Row 32

7 Cut-and-Stack for a Single Processor per Data Row 33

8 Read/Shift Parallel I/O 34

9 Timing Insertion Options 44

10 Processing a Single 512 x 512 Input Array on a IK MasPar
MP-1 48

11 Processing a Single 512 x 512 Input Array on a IK MasPar
MP-2 50

12 Period for Multiple 512 x 512 Input Arrays 54

13 Smallest Machine Size for Various Input Array Sizes 58

14 Sustained Processing Utilization for 2K MasPar MPPs 60

15 Sustained Processing Utilization for Various Machine Sizes 61

A-l The RT_2DFFT Benchmark Functional Specification 74

VI

LIST OF TABLES

TABLE PAGE

1 Network Throughput Requirements for External I/O 10

2 MasPar Product Family 16

3 Descriptions of the MP-1 and MP-2 Utilized in this Report 17

4 Maximum Input Array Size as a Function of MasPar MPP
Configuration 37

5 Comparison of Row/Shift versus Cut-and-Stack Data Ar-
ray 1/0—512 x 512 Array 46

6 Maximum Times in Milliseconds for Latency Equals Period 51

7 Sustained Processing Rate in Mflops/s for Latency Equals Period 51

8 Maximum Times in Milliseconds for Latency Greater than Period 55

9 Sustained Processing Rate in Mfiop/s for Latency Greater
than Period 56

A-l Processing Rate and Memory Requirements for the RT_2DFFT
Benchmark 75

C-l Specifications of the MP-1 Machine 84

C-2 IK MasPar MP-1 Empirical Data 84

C-3 2K MasPar MP-1 Empirical Data 85

C-4 4K MasPar MP-1 Empirical Data ' 86

C-5 8K MasPar MP-1 Empirical Data 87

C-6 16K MasPar MP-1 Empirical Data 88

Vll

D-l Specifications of the MP-2 Machine 89

D-2 IK MasPar MP-2 Empirical Data 90

D-3 2K MasPar MP-2 Empirical Data 91

D-4 4K MasPar MP-2 Empirical Data 92

Vlll

SECTION 1

INTRODUCTION

Previous internal MITRE efforts have developed a benchmarking methodology
for real-time embedded scalable high performance computing (Games, 1996). This
benchmarking methodology has been formally documented and proposed to the
Defense Advanced Research Projects Agency (DARPA)/Information Technology
Office (ITO) as a means to compare performance of the various parallel process-
ing architectures being developed within DARPA/ITO's embedded computing
program. The central focus of this benchmarking methodology is to determine
the level of scalable massively parallel computer performance under realistic cir-
cumstances for a particular function. Much of the infrastructure and overhead of
real-time processing is included in the benchmark implementations so that results
are highly predictive of scalable massively parallel architecture performance. The
RT_2DFFT benchmark was specified in (Games, 1996) as a test of the proposed
methodology. We extended the MITRE real-time embedded scalable high per-
formance computing benchmarking concept previously implemented on the Intel
Paragon and implemented the RT_2DFFT benchmark on the MasPar MP-X series
of massively parallel processors (MPPs).

The Intel Paragon is an example of a multicomputer with multiple independent
computers connected with a mesh communications architecture. Flynn's taxon-
omy of computer architecture classifies this machine as a multiple-instruction
stream, multiple-data stream (MIMD) architecture (Fox, 1988). In contrast, the
MasPar MP-series is an example of an architecture that is distinctly different from
the Intel Paragon and the MasPar MPP would be classified by the Flynn taxonomy
as a single-instruction stream, multiple-data stream (SIMD) architecture. SIMD
architectures have each processor execute the same instruction concurrently—with
the option to software select any subset of the processors.

RT_2DFFT BENCHMARK

The RTJ2DFFT benchmark specifies a simple symmetric two-dimensional fast
Fourier transform (FFT) within a real-time software test bench (Games, 1996).
This benchmark is applicable to synthetic aperture radar (SAR) image formation.
SAR is among the premier near-term signal processing applications of scalable
computing and is an appropriate initial focus for real-time embedded bench-

marking activities. FFTs are full-information problems where every input value
influences all output values. FFTs are also synchronous problems that can be
processed in a tightly coupled data parallel manner. Parallel computer algorithms
for FFTs are well documented in the literature, with FFT algorithms often being
used as an example problem to describe entire algorithm classes for an architecture
(Fox, 1988; Hwang, 1984; Quinn, 1987; Stone, 1987).

There are distinct limitations on the parallel programming paradigms that
can be utilized with SIMD architectures (Fox, 1994). This fact is reflected in
the limited implementation options for the RT_2DFFT benchmark on the MasPar
MPPs. All efficient MasPar RT_2DFFT implementations must be synchronous
and data parallel—compared to Intel Paragon RT_2DFFT implementations, which
can include more complicated parallelization paradigms including pipelining in
addition to data parallel paradigms.

To account for irregularities that affect timing such as overheads associated
with non real-time operating systems, a benchmark is typically run iteratively for
a long duration. In a hard real-time context, worst case performance is the metric
of interest and must be within the stated real-time requirements.

TEST BENCH

The software test bench is an environment within which the real-time nature of
applications—such as the RTJ2DFFT benchmark—can be examined. The test bench
provides the realistic stimulus for a benchmark and includes the infrastructure and
overhead associated with a real-time implementation. This overhead includes data
buffering and flow control. The test bench also includes the necessary software to
collect and display performance statistics and to verify computational results. The
test bench consists of a dedicated data source that provides data to the function
under test and a data sink that collects the desired results. The source for an
actual embedded system would be external and stream data into a buffer. Results
collected at the data sink might be displayed in real-time on a graphical front-
end workstation or on a graphical display attached to a frame-buffer. External
input/output (I/O) is often the last frontier for massively parallel systems, so
the initial implementation of the test bench does not attempt to interface with
external data sources, rather internal buffers are used for the data source and data
sink.

Due to differences in underlying architectures, separate test bench implemen-
tations have been developed for the Intel Paragon (Brown, 1994) and the MasPar
MPPs. The primary differences between test bench implementations are a result
of the hardware available to support the data source and sink on these machines.
The MasPar test bench implementation requires a custom developed software
architecture to maximize real-time application performance by minimizing inter-
action with the UNIX-based front-end processor.

HISTORY

The RT_2DFFT benchmark has evolved from previous work that describe im-
plementations of real-time benchmarking on the Intel Paragon (Brown, 1994;
Brown, 1995). Initial work on a parallel implementation of a two-dimensional FFT
benchmark for the Intel Paragon, based on a pipelining programming paradigm, is
discussed in (Brown, 1994). The FFT implementation in that paper capitalizes on
the capability of a MIMD architecture to run different code on each processor to
implement a parallel algorithm as pipelined meta-problems. A second application
benchmarked within the real-time embedded test bench on the Intel Paragon is
a SAR benchmark application (Brown, 1995). This work is important because
it illustrates the validity of the test bench concept as separate functions were
developed and individually tested, and then integrated into a functional real-time
algorithm. As long as individual functions had predictable performance, they
could be combined into the larger SAR application with predictable results.

Another real-time Department of Defense application using the MasPar MPP
is the Theater Missile Defense Ground Based Radar (TMD-GBR). The MasPar
MP-2 MPP system has been selected as the signal processor for the TMD-GBR
system being developed by Raytheon Co., Lexington, MA., for the US Army
Ground Based Radar Project Office in Huntsville, AL. The TMD-GBR is the
sensor for the new Theater High Altitude Area Defense (THAAD) missile defense
system being developed to protect friendly troops and population centers from
tactical ballistic missiles similar to those fired by Iraq during Operation Desert
Storm. This contract award marks the first time that commercial off-the-shelf
(COTS) MPPs have been used in a large-scale, mission-critical, field-deployable
system. The MasPar MP-2 was selected after rigorous competition because of its
I/O capabilities, which provide both high bandwidth and low latency.

SUMMARY OF RESULTS

We developed a single RT_2DFFT implementation that extensively uses available
library functions from MasPar and that can examine both benchmark latency
specifications: latency equal to the period and latency greater than the period.
Through the use of the RT_2DFFT benchmark implementation, we show that the
MasPar MPPs can read a two-dimensional data set or input array from an I/O
buffer, perform the two-dimensional FFT, and write the processed array out to an
I/O buffer—all within the one second input array inter-arrival time specified in
the benchmark—for 256 x 256, 512 x 512, and IK x IK single precision complex
input arrays. If latency is permitted to extend beyond one second, we show that
it may be possible to reduce the machine size by processing sufficient multiple
FFTs simultaneously, so that an entire row of a two-dimensional input array is
assigned to a single processor. In this instance, the RT_2DFFT benchmark runs
more efficiently, because communications overhead is minimized during both I/O
and FFT processing.

The smallest machine capable of meeting the timing specification for the
latency-equal-period case varied from IK to 8K for the MP-1 while a IK MP-
2 was able to process each of the three input array sizes successfully. We were
in fact unable to process a 2K x 2K input array in the required one second
inter-arrival period on either of the MasPar machines that we used to test our
RT_2DFFT implementation; however, we anticipate that we should be able to
process a 2K x 2K input array on an 8K processor MP-2 within the one second
inter-arrival time requirement.

We identified constraints on maximum problem size for two-dimensional ap-
plications with single precision complex data array elements—some constraints
are due to the hardware architecture and some constraints are due to the com-
putational capabilities. Constraints on maximum PE memory impose a potential
limitation on input array sizes of 8K x 8K rows and columns. Furthermore,
maximum IORAM memory constraints reduce the maximum input array size to
4K x 4K rows and columns, and maximum I/O subsystem bandwidth constraints
further reduce the maximum input array size to only 2K x 2K rows and columns.

Processing-input arrays larger than 2K x 2K would not be possible on either
the MP-1 or MP-2 even if I/O subsystem bandwidth limitations are overcome,
assuming that we maintain the one second period requirement. We found that
as the number of rows in the input array are doubled, the number of processors
required to meet a constant timing requirement must increase by at least a factor of

four. While this is not unexpected when processing two-dimensional input arrays
for a two-dimensional FFT application, present MasPar processors are limited
to only 16K processors and consequently growth to larger input arrays would be
limited by the maximum size of the PE array. Given the trends apparent in the
data, at least a 32K processor machine or a system speedup of a factor of four
would be required to handle a 4K x 4K input array.

It should be emphasized that all these results apply to the RT_2DFFT benchmark
specification given in appendix A. This benchmark specification maintains a one
second inter-arrival period independent of input array size. As such, it represents
a substantial real-time test of the underlying hardware and system software as
the input array size is increased. Any actual application that would require
such two-dimeDsional FFT processing, e.g., SAR, could have a longer inter-arrival
time and specific latency requirements. The parametric benchmarking techniques
and infrastructure described in this report could be easily adapted to assess the
suitability of the MasPar MP-X architecture for a particular target application
once the actual real-time requirements are specified.

ORGANIZATION OF THIS REPORT

This paper is organized as follows. In section 2, we provide some general
information on some fundamental concepts used in this paper. Material presented
in this section expands upon the RT_2DFFT benchmark implementation guidelines
presented in appendix A. In section 3, we describe the MasPar MP-X series
hardware and software architecture. In section 4, we describe the software and
hardware architectures of the MasPar test bench. In section 5, we describe
the FFT implementation selected for the RT_2DFFT benchmark for this machine.
We present a detailed discussion on the implementation choices and the logic
for the selection of our RT_2DFFT benchmark software architecture. We have
made extensive use of MasPar library routines in the implementation, and in
appendix B, we present details on the utilization of supplied routines that move
data within parallel data structures.

In section 6, we discuss the practical constraints on the RT_2DFFT bench-
mark implementation imposed by available MasPar hardware configurations. We
present empirical performance results for the MasPar RT_2DFFT implementation
in section 7, and we present tabular collections of empirical performance data
in appendices C and D, respectively for the MP-1 and MP-2. Our conclusions

on the RTJ2DFFT benchmark results and the applicability of the MasPar MPP
architecture for real-time applications are presented in section 8.

SECTION 2

FUNDAMENTAL CONCEPTS

The MITRE benchmarking methodology for real-time embedded scalable high
performance computing has been published as reference (Games, 1996). The
RT_2DFFT benchmark was proposed to test the methodology and is reprinted
in appendix A. In this section, we highlight some fundamental concepts from
that specification that are critical to developing the RT_2DFFT benchmark for the
MasPar MPPs. In particular, we discuss the real-time embedded processing and
the RT_2DFFT benchmark, the difficulties with external I/O, and the manner with
which we software-select the MasPar processor element (PE) array size.

REAL-TIME EMBEDDED PROCESSING

This paper examines a two-dimensional algorithm on a two-dimensional input
array or matrix—symbolically referred to as A. In particular, we are implementing
the RT_2DFFT benchmark, a symmetric two-dimensional fast Fourier transform.
The objective is to find the smallest MasPar machine size that can meet bench-
mark timing requirements for various input array sizes. The two-dimensional
input array size is described as a function of height and width, where array sizes
are specified by the number of rows and columns—m x n.

For the RT_2DFFT benchmark, all input arrays are square and limited to sizes
of powers of two. For all potential input array sizes under test, all processors will
be utilized in our data parallel, synchronous implementation for the RT_2DFFT
benchmark, because both MasPar machine sizes and input array sizes are powers
of two. An input array is identified by its dimensions—a 512 x 512 input array has
512 rows and columns. Matrices with 1024 rows and columns will be described as a
IK x IK array, and those arrays larger than IK x IK will also be referenced using
a similar notation—2K x 2K, 4K x 4K, etc.—where K always equals 210 = 1024.

Let us define a problem V as performing a two-dimensional FFT on a single
input array. If the inputs for the problem become available to the computer at
starting time ts and the solution is completed at time tc, then the processing
latency for problem V is (tc — ts). For the RTJ2DFFT benchmark, we are assuming
that there is a temporal stream of problem instances V\, V2, ■ ■ ■ , Vi, ... with a
fixed inter-arrival time r, referred to as the problem inter-arrival time or period.

Consequently, input arrays arrive in the sequence Ai, A2, ... , Aj, ... with the
fixed inter-arrival time T. Corresponding processed output arrays are denoted by
Z\, Z12, ... , Z{;,

The RT_2DFFT benchmark stipulates two processing latency scenarios:

Case 1: latency equal to the period,

Case 2: latency greater than the period.

For the initial RT_2DFFT benchmark, the period is specified as one second. Other
benchmarks for actual applications may specify other inter-arrival times. Video,
for example, has new frames of data arriving every ^th of a second, the refresh
rate.

The latency-equals-period case would relate to those embedded applications
where processing must be handled as quickly as data are generated by sensors
due to the requirement for time-critical responses. Other embedded applications
require only that the processed output must be generated at a rate that sustains
the real-time rate of the input. For both latency cases, processed output must be
generated at a rate that sustains the real-time rate of the input—the time between
successive processed outputs must be less than or equal to r. The latency-greater-
than-period case induces a delay in the real-time output. For pipelined MIMD
implementations of the RT_2DFFT benchmark, each problem instance yields a
processed array (after the pipeline is filled). In contrast, for this latency case,
our SIMD RT_2DFFT implementation collects multiple input arrays and processes
them simultaneously.

Using notation for problems from above, multiple problems would be aggre-
gated and processed simultaneously in parallel. If b consecutive problems are
blocked together for the SIMD implementation latency-greater-than-period case,

the problem definition can be stated as [Pi, V2, ■ ■ ■ , Vb],[Vb+i, Vb+2, ■ ■ ■ , Vi-i\-,
This can be redefined as Vi, V?, ... , Vk, • • •, where Vk represents the prob-
lem statement for a block of input data. Using similar notation as above,
input for this case would be blocked together for b consecutive input arrays,
[Ai, A2, ... , A;,],[J4&+I, Ab+2, ■■■ , A2.b] ■ ■., and the output would be in the
form [Zi, Z2, ... , Zb],[Zb+i, ^6+2, • • • , Z2.b] ■ ■ ■■ The definition of block processing
latency here is similar to the single problem case, except it is assumed that the
starting time ts occurs when a block of data is available for processing and the
time tc occurs when processing is completed on a block of data. In our SIMD

implementation, only one block of problems can be processed at a time and so to
maintain an input period of r, the block processing latency cannot exceed (r • b).

Equivalently, the normalized quantity \tc~ts> will be used later to illustrate perfor-
mance improvements for processing multiple input arrays simultaneously under
the assumption of the second unrestricted latency case. This quantity corresponds
to the measured period of a single problem instance.

To ensure that processed arrays are delivered to the display device correctly,
the processed arrays within a block must be displayed at the input rate r. Rein-
stating the timing by pacing the output of the processed arrays during display is
referred to as recovering clock.

EXTERNAL I/O

The MITRE benchmarking methodology for real-time embedded scalable high
performance computing does not specifically address external I/O, due to the
complexities of this problem. External I/O is often the last frontier for massively
parallel systems, so initial implementations of the test bench do not attempt to
interface with external data sources. Resources internal to the MPP are used
instead for the data source and data sink.

To illustrate these complexities, we briefly examine the networking require-
ments to connect an external data source to an MPP. The input arrays used in this
version of the test bench are two-dimensional, with each element being a single-
precision complex value. Stored in binary form, each array element requires eight
bytes or 64 bits of information. In general, networking requirements expressed in
bits-per-second are of order 0(n2 ■ ß), where n is the input array dimension and ß
is the input array element size expressed in bits-per-element. Networking require-
ments are presented in Table 1 for representative input array sizes used in this
analysis. At the input array arrival rate of only a single array-per-second, network
throughput requirements for complex input arrays with dimensions greater than
256 x 256 rows/columns are so large that high-performance networking capabil-
ities beyond simple 10 megabit-per-second Ethernet networks will be required to
handle the throughput. Networking technologies capable of supporting these data
rates include Asynchronous Transfer Mode (ATM), Fibre Channel, and the High
Performance Parallel Interface (HiPPI) (Koester, 1994). At video refresh rates of
30 input arrays-per-second, the smallest input array will require high-performance
networking technology for uncompressed arrays, while larger input arrays will re-

Table 1. Network Throughput Requirements for External I/O

Input Array Size n
Data Throughput Rates

1 array-per-second 30 arrays-per-second

256 4 megabits-per-second
512 16 megabits-per-second

1024 64 megabits-per-second

2048 256 megabits-per-second

120 megabits-per-second
480 megabits-per-second

1920 megabits-per-second
7680 megabits-per-second

quire networking capabilities well beyond any networking throughputs available
today.

FINDING THE SMALLEST MACHINE

The real-time embedded benchmarking methodology has been developed ex-
plicitly to consider that the high-performance computer technology under test may
be embedded into military equipment and command and control (C2) platforms—
where size, weight, and power consumption can be critical factors. Consequently,
we are interested in finding the smallest machine that can sustain the processing
requirements. It is critical that we can adjust machine size as we run the RT_2DFFT
benchmark.

We have been able to capitalize on supplied software from MasPar to software
adjust the size of the PE array to run the RT_2DFFT benchmark on machines of
various simulated sizes. Before running the RT_2DFFT benchmark, we can specify
the PE array configuration with the mpswopt command, which permits the user
to select any simulated machine size up to and including the maximum size of
the actual machine. MasPar MPPs always have numbers of processors equal to
powers of two with the smallest machine having 1024 or IK processors. MasPar
MPPs are available with the following PEs array configurations:

• 210 or IK processors arranged with 32 rows x 32 columns,

10

• 211 or 2K processors arranged with 32 rows x 64 columns,

• 2 or 4K processors arranged with 64 rows x 64 columns,

• 213 or 8K processors arranged with 64 rows x 128 columns,

• 214 or 16K processors arranged with 128 rows x 128 columns.

By software adjusting the PE array size, we can examine various sized MasPar
computers, without requiring hardware reconfigurations of those machines avail-
able to run the RT_2DFFT benchmark. Throughout this paper, all references to
MasPar machine size will specify the number of processors with the short-hand
notation "K"—where K always equals 210 = 1024.

11/12

SECTION 3

MASPAR DESCRIPTION

The MasPar MP-X series of MPPs combines a scalable architecture with re-
spect to the number of processing elements, system memory, and system com-
munications bandwidth, with a reduced instruction set computer (RlSC)-like in-
struction set designed to leverage optimizing compiler technology, adherence to
industry standard floating-point operations, and a suitability to very large scale in-
tegration (VLSI) implementation (Blank, 1990; MasPar Computer Corp., 1992).
According to Flynn's taxonomy, the MasPar MPP architecture would be described
as single instruction stream, multiple data stream or SIMD architecture. The basic
MasPar MPP architecture has been relatively unchanged since its introduction in
1990. Scalability, leveraging the best computer science technologies, adherence to
standards, and cost effective manufacturing techniques have contributed to the
unusually long lifespan of the MasPar MP-X series MPP technology.

MASPAR SYSTEM OVERVIEW

The MasPar MPP system has five major subsystems that are described briefly
below (Blank, 1990).

UNIX Front-End (UFE): The UNIX front-end provides a standards-based
interface to the massively parallel PE array. The UFE provides all
user interfaces to the MPP, including slow-speed networking interfaces,
standards-based networking software, and a UNIX-based operating sys-
tem.

Processor Element (PE) Array: The PE array is the massively parallel
computation engine of the MasPar. The number of PEs can scale from
IK (1024 = 210) to 16K (16,384 = 214) processors.

Array Control Unit (ACU): The ACU performs two functions:

• The ACU controls the PE array by broadcasting all instructions to
the massively parallel processor array.

13

• The ACU also functions as an independent processor and calculates
all serial portions of MasPar Parallel Application Language (MPL)
programs (MasPar Computer Corp., 1993).

Interprocessor Communications: Key to any parallel processor is the in-
terprocessor communications structure. The MasPar MPP has three
interprocessor communications capabilities for the PE array:

• A two-dimensional mesh network for communications with neigh-

boring processors.

• A global router network for random processor-to-processor commu-
nications using a circuit-switched, hierarchical crossbar communi-
cations network. This high-performance router-based communica-
tions network can also provide high-performance links to the In-
put/Output (I/O) subsystem, because the last stage of the network
connects to an I/O buffer, the IORAM.

• Two global buses: one bus for broadcasting instructions and data
from the ACU to the PE array, and a second bus for receiving
consolidated status responses from the PE array at the ACU.

Input/Output (I/O) Subsystem: The I/O subsystem provides high speed
I/O with a channel style architecture that permits overlapped computa-
tion and communications. The MasPar architecture has been designed to
support multiple gigabit-per-second HiPPI network interfaces and with a
bus throughput within the I/O subsystem to support those high through-
put rates. Input and output data are stored in a large random access
buffer—the IORAM—that is connected to the PE array via the global

router network.

The MasPar MPP has two separate instruction steams (the UFE and the
ACU), and four separate memory structures for storing user data (the UFE,
IORAM, the ACU, and the PE array). All PE instructions are stored in the ACU,
and are broadcast to the PEs—thus the classification as a SIMD architecture. Due
to the separate instruction streams, two programming approaches are possible and
supported by MasPar:

14

• When developing application codes using only MPL, the programmer
develops one application code that is automatically distributed between
both the UFE and the ACU, and user data is partitioned across the UFE,
ACU, and PE array. All interprocess communications is automatically

handled by the compiler.

• When developing application codes for the UFE in the C programming
language and the ACU/PE array combination in MPL, the programmer
develops separate application codes for both locations and the program-
mer must explicitly partition the user data across the UFE, ACU, and PE
array. All interprocess communications between the UFE and the MPP
back-end must be explicitly handled when developing the programs.

Either programming approach can utilize synchronous or asynchronous inter-
action models. The synchronous programming model utilizes only the UFE or
the ACU/PE array combination at any instant and a Remote Procedure Call
(RPC) convention provides a straight-forward interface between the two separate
processes. The asynchronous model, on the other hand, utilizes a FORK/JOIN
model to permit the UFE and the ACU/PE combination to operate concurrently.

DESCRIPTIONS OF THE SPECIFIC MP-X MACHINES

We tested our RT_2DFFT implementation on two different MasPar platforms:
a 16K MP-1 at the Northeast Parallel Architectures Center (NPAC) at Syracuse
University and a 4K MP-2 at the MasPar Corporation office in Framingham, MA.
The primary differences in these two generations of compatible systems are the
processor performance capabilities. While the integer performance of the processor
has improved by greater than a factor of two and floating point performance of
the processor has improved by greater than a factor of five, the performance
of the communications networks has remained essentially unchanged in the new
architecture. Table 2 illustrates the differences in peak integer and floating point
performance for the MP-1 and MP-2. In this table, peak integer performance
is labeled as millions of instructions per second (MIPS), and peak floating point
performance is labeled as Mflop/s.

Specifications of the machines used to implement the benchmark are presented
in Table 3. In this table, we indicate the UFE machine type and its operating
system (OS), the size of the PE array, and the available amount of each of four
memory types. The amount of IORAM is shown as the amount available as we

15

Table 2. MasPar Product Family

System Number of
Generation Processors MIPS Mflop/s

MP-1 IK 1,600 75
2K 3,200 150
4K 6,400 300
8K 13,000 600

16K 26,000 1,200

MP-2 IK 4,250 400
2K 8,500 800
4K 17,000 1,600
8K 34,000 3,200

16K 68,000 6,300

ran the RT_2DFFT benchmark; in the case of the MP-1 the total IORAM was
larger, but system configuration limited the amount available to be used as a
data source/sink buffer. We were able to software reconfigure each machine to a
smaller size, so our benchmark was run on MP-1 machines of size IK to 16K and
on MP-2 machines of sizes IK to 4K.

We encountered another performance improvement in MasPar MPP models,
although it is related to the date-of-manufacture rather than to the system model.
In later machines, the UFE workstation has been upgraded. Earlier MP-ls and
MP-2s used a DECstation 5000 workstation running ULTRIX as the operating
system for the UFE. The UFE for later deliveries of MP-Xs has been upgraded
to a Digital Equipment Corporation (DEC) Alpha workstation running Digital
UNIX (formerly known as OSF/1), a variant of UNIX. The NPAC MP-1 has
a DECstation UFE, while the MP-2 model has a DEC Alpha UFE. There is a
significant performance improvement with the more capable Alpha processor and
the Digital UNIX operating system.

16

Table 3. Descriptions of the MP-1 and MP-2 Utilized in this Report

MP-1 MP-2

Front-End DECstation Alpha Workstation
FEOS Ultrix V4.3 Digital UNIX (OSF)

PE Array 16K = 128 x 128 4K = 64 x 64
ACU IMEM 1 Mbytes 4 Mbytes

ACU CMEM 1 Mbytes 512 Kbytes
PEMEM 64 Kbytes 64 Kbytes

IORAM Size 32 Mbytes 128 Mbytes

The MP-2 was connected to an isolated network, where often we were the sole
user on the system. On the other hand, the MP-1 was connected to the Internet;
so, even if our RT_2DFFT benchmark was the only process running on the ACU/PE
array, there was the possibility that another user could execute a process on the
UFE and potentially affect the system clock calls and increase timing variability.

17/18

SECTION 4

MASPAR TEST BENCH IMPLEMENTATION

In this section, we describe the hardware and software architectures of the
MasPar test bench. In section 5, we examine the implementation details of the
RT_2DFFT benchmark FFT algorithm.

The software test bench provides the realistic stimulus for a benchmark and
includes the infrastructure and overhead associated with a real-time implementa-
tion. This overhead includes data buffering and flow control. The test bench also
includes the necessary software to collect and display performance statistics and
to verify computational results. The test bench includes a dedicated data source
that provides data to the function under test and a data sink that collects the
desired results. The data source and sink must be separate from the ACU and PE
array. The source for an actual embedded system would be external and would
stream data into a buffer. Results collected at the data sink might be displayed in
real-time on a graphical front-end workstation or on a graphical display attached
to a frame-buffer.

SOFTWARE ARCHITECTURE

The MasPar test bench implementation requires a custom developed software
architecture, the development of which has been driven by the requirements to
implement the data source and data sink buffers. Buffering data in the IORAM
requires access to both the UFE and the ACU/PE array combination, which in
turn requires that the software be written partially in C for the UFE and the
remainder in MPL for the ACU/PE array combination. Initialization of the I/O
subsystem is only accessible from the UFE and cannot be invoked from an MPL
program. As a result, a specialized software architecture was required where the
main program, written in the C programming language, on the UFE calls the real-
time test bench as an external function. At present, a synchronous interaction
model is utilized. If the complete I/O structure is implemented—unprocessed
arrays coming in over the HiPPI network and processed arrays being displayed
via the frame buffer—the asynchronous interaction model will be required as the
UFE controls the I/O processes concurrently while the ACU/PE array processes
the computational application.

19

With this architecture, special considerations are required to maximize real-
time application performance by minimizing interaction with the UFE. To ensure
optimal performance, the real-time computing tasks must execute as a contiguous
program on the PE array, while being controlled by the ACU. Running the real-
time processing from the ACU ensures that disruptions due to communications
from the UFE to the ACU via the slow virtual memory expansion (VME) bus
are eliminated. Running the real-time processing from the ACU also isolates the
UNIX operating system on the UFE from the repetitive processing.

The resulting test bench software architecture is presented in Figure 1. This
figure clearly illustrates the relationship between the application specific module
and the test bench or software test environment. The application specific module
for the RT_2DFFT benchmark is a two-dimensional FFT. The test bench provides
all the infrastructure within which to run the computational benchmark. The test
bench provides software simulation of the I/O, post-processing, and verification of
results. The test bench architecture requires that the command line parameter list
be transferred to the control program running on the ACU so that the repetitive
processing loop can be run from this MPL program.

HARDWARE ARCHITECTURE

In Figure 2, we present a diagram of the MasPar MPP that includes the
program data flow as we run the test bench. This diagram illustrates that the
test bench requires access to many of the subsystems within the MasPar. The
test bench main program is run on the UFE, which distributes the command-line
parameter list to the benchmark software running on the ACU and the PE array.
Test input arrays can be read from disk into the UFE and can be transferred to
the IORAM after this memory has been initialized by support functions running
on the ACU.

Figure 2 includes the MasPar I/O subsystems that bring in external inputs and
display the output on an internal frame buffer (MasPar Computer Corp., 1994).
At present, we are not required to include external I/O in the RT_2DFFT bench-
mark; nevertheless, we include a complete hardware description of the I/O sub-
system to illustrate that external I/O hardware is readily available for MasPar
MPPs. To be fully operational, a real-time program must consider the flow of
data in from an external HiPPI-connected source and out to a display connected
to a frame buffer. In the present version of the test bench, we simulate I/O within
the MasPar by implementing parallel data transfers between the PE array and

20

Program running

on the UFE

mp_TestBench.c

mam

check command line input

I
pass parameter list

I
allocate 10 RAM

I
setup IORAM

I
call the Test Bench

unsetup IORAM

I
verify results

Program running on the

ACU and PE array

mp_TestBench.m

initialize parameter list

setup IORAM

The Test Bench

setup timers

allocate PE memory

I
Loop:

1. move array to the PE array

2. application specific module

3. move array to IORAM

I
post-process

unsetup IORAM

Figure 1. MasPar Test Bench Software Architecture

the IORAM—where the IORAM is both the data source and sink buffers. Later
programs that fully implement data movement from the HiPPI interface to the
IORAM or from the IORAM to the frame buffer would also utilize the IORAM to
double buffer the data while the ACU/PE array is performing calculations on the
data array. Further research is required to validate the real-time characteristics

21

Disk ■

FGET

UFE

main

parameter list -

debug

test array

Optional External I/O

Source- ->►
HiPPI

Interface

SERIAL
READ

Display Frame Buffer

SERIAL
WRITE

IORAM

input array

processed

array I

COPY-I

ACU and IMEM

External Functions

5* parameter list

setup/tear-down

2DFFT Benchmark

processor

array

■comtrol

PARALLEL
WRITE

:o
o
o

Figure 2. MasPar Test Bench Hardware Architecture

of asynchronously transferring data between the IORAM, HiPPI interface, and

frame buffer.

The most important data flow within the program is the highly-parallel data
transfers between the IORAM and the PE array. These read/write operations
occur synchronously, in parallel, with data sent to processors using software
programmable offsets. MPL provides the capability for plural variables, where
a plural variable is allocated space on each processor in the PE array and is
calculated in a data parallel manner. The values of plural variables generally
are related to the spatial nature of the PE array. Read/write offsets are plural
variables—as a result, any parallel read/write operation can be implemented.

A single library function call synchronously implements highly parallel data
transfers between processors. These transfers are the first and last steps in each

22

loop cycle within the test bench—the loop is repeated iteratively to gather timing
statistics. Due to the synchronous nature of the SIMD PE array, it is impossible
to double buffer this data transfer operation to hide the communications costs.

The last significant data flow within the test bench is reserved for debug-
ging. The MasPar has excellent libraries of support software and we used the X-
Windows-based display software to generate pseudo-images representing memory
state throughout the PE array (MasPar Computer Corp., 1992). Consequently,
while developing and validating the test bench, we viewed representations of both
input and processed data arrays to validate algorithms and I/O procedures.

23/24

SECTION 5

MASPAR RT_2DFFT BENCHMARK IMPLEMENTATION

In this section, we examine the implementation details of the FFT algorithm
used in the RT_2DFFT benchmark. We start by describing the parallelization alter-
natives for the MasPar SIMD architecture. Next, we discuss the FFT implemen-
tation options for the MasPar with a detailed examination of the FFT function
from the MasPar mathematics library. Lastly, we describe in detail the mapping
of input data matrices to the PE array.

PARALLELIZATION ALTERNATIVES

The SIMD architecture of the MasPar machines limits the parallelization op-
tions for the RT_2DFFT benchmark. Since each processing element in the PE array
must execute the same instruction—with the option to software select a subset of
the processors—the PE array cannot efficiently work simultaneously on more than
a single data array unless the processing is synchronous. Consequently, we cannot
efficiently use the PE array in a pipeline implementation, where one portion of the
PE array processes a segment of one input array while another PE array portion
processes a different segment of another input array. To be efficient, the RT_2DFFT
implementation must be synchronous and data parallel with the whole PE array
either working on a single problem instance or working on multiple problems
simultaneously. For data-parallel, synchronous problems, the programmer must
consider the amount and regularity of interprocessor communications and also
ensure that the algorithm is implemented in a truly synchronous manner.

The parallel algorithm/parallel architecture combination for an FFT on the
MasPar massively parallel SIMD architecture leaves few options when implement-
ing this algorithm for the two latency cases—both implementations must be syn-
chronous, tightly coupled, and data parallel. Actually, we have been able to meet
all requirements with a single implementation for the MasPar that is capable of
handling all possible mappings of FFTs to the architecture, regardless of whether
one or more two-dimensional data arrays are processed simultaneously. For the
latency-equals-period case, all processors must be assigned the task to work on
a single data array. On the other hand, when greater latencies are permitted,
multiple input arrays can be processed simultaneously—providing more workload
for an individual processor and reducing the amount of interprocessor commu-

25

nications. Regardless of the RT_2DFFT benchmark timing requirement, efficient
algorithms for SIMD architectures will be synchronous.

IMPLEMENTING TWO-DIMENSIONAL FFTS

We have implemented the RTJ2DFFT benchmark using supplied library routines
from MasPar to perform the FFT and to manipulate data throughout the proces-
sors. We have extensively used library software in the RT_2DFFT implementation
because MasPar has attempted to optimize this software for their MPP architec-
ture. We have examined two versions of two-dimensional FFT library software
for the RT_2DFFT implementation:

1. The MasPar image processing library (MPIPL)
(MasPar Computer Corp., 1992),

2. The MasPar mathematics library (MPML)
(MasPar Computer Corp., 1992).

The image processing library has all data matrices arrayed in a form called a two-
dimensional hierarchical mapping, where the data is arranged onto the processors
as if both the data and processors are in a two-dimensional array. Each processor
gets a localized rectangular sub-array of data. As a result, this FFT algorithm
can only be used for a single matrix to PE array mapping. On the other hand,
the MPML FFT routines have a more complicated mapping of data to the PE
array; however, this FFT function is more extensible and permits more options.

Previous research on MIMD architectures (Brown, 1994) has shown that when
there is adequate memory, the most efficient parallel two-dimensional FFT algo-
rithm occurs when all data in a row is placed on a single processor and the
two-dimensional FFT algorithm is implemented by:

1. performing a one-dimensional FFT without any communications,

2. performing a matrix transpose or corner-turn,

3. performing a second one-dimensional FFT, again without any communi-

cations.

With the MPIPL FFT functions, this algorithm scenario was impossible.

26

Benchmarks from MasPar confirmed that the combination of performing a
pair of one-dimensional FFTs separated by a corner-turn or matrix transpose
is the most efficient two-dimensional FFT implementation (Pickard, 1995). Due
to its flexibility and potential for better performance, we have selected an FFT
routine from the mathematics library. The MPML FFT routines are sufficiently
extensible that we have been able to develop a single RT_2DFFT implementation
that can handle both:

Case 1: A single input array mapped to all processors,

Case 2: Multiple input arrays mapped to the processors and
processed simultaneously.

These cases correspond to the two latency scenarios in the RT_2DFFT benchmark
specification (see section 2). By using the mathematics library FFT routines and
other routines that efficiently rearrange data on the PEs, a single RTJ2DFFT im-
plementation can process both latency requirements of the RT_2DFFT benchmark.

When the entire PE array collaborates on processing a single input matrix,
then the RT_2DFFT benchmark specifies that we select the smallest sized machine
where the latency to process an input array is equal to the period. When we ex-
amine more than one input array simultaneously, the latency will be greater than
the period. In fact, the only reason to examine the latency-greater-than-period
case, is to be able to perform the processing more efficiently, and consequently,
reduce the machine size.

MPML FFT IMPLEMENTATION OPTIONS

To research both latency requirements, we have included software in the
RT_2DFFT implementation that examines all possible numbers of input arrays that
can be processed simultaneously given the PE array size and memory constraints
of available MasPar MPPs. The RTJ2DFFT implementation assumes that all input
array sizes and numbers of input arrays are powers of two, so that there are always
perfect mappings from the input data to the PE array size. We have examined
several possible mappings of input data to the processing elements for the FFT
library routines. Our discussion will concentrate on three specific mappings:

1. A single input array spread over the entire PE array,

27

2. A single input array row per PE,

3. Multiple input array rows per PE, or multiple tiers of data.

The three mappings are graphically illustrated in Figure 3. In some instances, to
utilize the available PE memory, it may be required to replicate the input array
rows on an individual processor. This will be performed by generating multiple
tiers where a single row is mapped per processor. Each tier may have multiple

input arrays, and each tier of arrays is processed iteratively.

For the MPML FFT routines, the PE array is considered a one-dimensional
linear array rather than a two-dimensional mesh. A single function call performs
the parallel FFTs for any number of tiers, regardless of the mappings, as long the
data is loaded into memory in the proper locations on the appropriate processors.

The first mapping is required for the latency-equals-period case when the
number of processors is greater than the number of rows. For those instances
where the number of processors equals the number of rows in a single matrix,
then the second mapping—with P = n—would be used for the latency-equals-
period case. In section 6, we discuss the limitations that the PE array size and
the amount of memory have on these data/processor mappings.

For the latency-greater-than-period case, we can exploit the additional available
parallelism and take full advantage of the available memory on the PE array
and perform multiple FFTs concurrently. As we process multiple input arrays
concurrently, there are three situations of interest. The first situation occurs
when even with multiple input arrays, individual data rows must be spread over
multiple processors; the second situation occurs when there are adequate data
that entire rows are assigned to an individual processor; and the third situation
occurs when there are sufficient data that multiple input array rows are assigned to
individual PEs—arranged in multiple tiers. The first of these situations would be
an extension of the first mapping in Figure 3—with multiple input arrays spread
across the PE array and requiring multiple processors per row. When there is at
least an entire input array row on a processor, communications when performing
the one-dimensional FFTs are minimized and performance should be maximized.
We illustrate this point in section 7 with empirical data.

28

One Input Array on the Entire PE Array

PEs 0 12 3 4 5 6 7

Rows 0

(P-1)

0 00

(n-1)

One Input Array Row per PE

PEs 0 12 3 (n"1)

Rows 0 12 3 (n-1)

(P-1)

000 ooo

Multiple Tiers of Input Array Rows per PE

PEs 0 1 2 3 (n-1)
(P-1)

Image 0

TierO ooo ooo

Tier!
Image t

ooo ooo

Rows 0 12 3 (n-1)

Figure 3. Mapping One or More Input Arrays onto the PE Array

MAPPING INPUT DATA TO THE PE ARRAY

We are assuming that the input data are available in the source buffer in
raster-scan format, that is, in row-major format. We think of a two-dimensional
input array as being in a rectangular form; however, our data is actually one long
stream that will have end-of-row breaks imposed simply by the matrix width.
Figure 4 illustrates a single input array and how the two-dimensional nature of

29

rowO

row 1

 ->
 _____ =_5».

row 2

row 3

0
0

 >

_—■—>

o

o
0

0

 —>
==—=»-

 =—=»-
 — =».

Figure 4. Conceptual Two-Dimensional Input Array

the data is actually a single data stream. Input data is stored in a single source
buffer (IORAM), with row delimiters calculated from matrix size. When we are
processing more than one input array at a time, they are simply arranged in
consecutive order, and data location information is calculated as a function of
input array size and identifier. Figure 5 illustrates multiple input arrays and the
manner with which they are handled as a single data stream.

The library FFT routines specify that when more than one processor is re-
quired per input array row, the data will be mapped to the PE array in a manner
referred to as cut-and-stack. In a cut-and-stack data/processor mapping, data
within an individual row are assigned to the processors in a round robin man-
ner with adjacent matrix elements being assigned to adjacent processors, then
wrapped back to the first processor assigned to the matrix row. Cut-and-stack
for multiple processors assigned to a single data row is illustrated graphically in
Figure 6. The cut-dimension equals the number of processors assigned to a single
row. Assigning an entire input array row to a processor is a degenerate form of
cut-and-stack, where the cut-dimension is equal to one. Cut-and-stack for a single
processor assigned to a single input array row is illustrated graphically in Figure 7.
This figure also depicts the manner in which multiple input arrays are mapped to
processors.

30

rowO

row1

row 2

row 3

rowO

rowl

row 2

row 3

 -- >

 >

 .== 5»

o
o
o
 - >

—— •*■

 =—=»•

T

-—•*■

o
o
o

Figure 5. Multiple Two-Dimensional Input Arrays

The cut-and-stack data mapping for multiple processors per data row is, un-
fortunately, the worst mapping to implement directly when moving data originally
in row-major order to the PE array. Only single matrix elements can be read at
a time, albeit in parallel, to the PE array—a loop must be used to repeated read
single values in parallel until all data is transferred to each processor in the PE
array. The parallel data reads from IORAM use the router-based network and
communications on this media incur communications overhead that is a linear
combination of a fixed start-up latency and a message transfer cost proportional
to message size. Consequently, multiple parallel data reads from IORAM incur
multiple instances of fixed communications latency, inflating the overall commu-
nications costs to move source data from the IORAM to the PE array and to
move the processed data from the PE array back to the IORAM. When there are

31

rowO

row1

row 2

row 3

0
0

0

o
0

0

.5^

" '^*

PEs PEs
0 12 3 4 5 6 7

SSSjijMjpBK;

row 0 row 1

Figure 6. Cut-and-Stack for Multiple Processors per Data Row

adequate data that an entire row is mapped to a single processor, the degenerate
cut-and-stack permits the data to be read in a single parallel operation.

To minimize communication costs, we developed a two step process to read
and write data in parallel from and to IORAM. This technique reads a section
of an input array row to a processor and then redistributes the row data to the
processors in the appropriate cut-and-stack format. We save communications time
by limiting the number of parallel input data read/writes, and we replace these
operations with a call to a MasPar library routine that shißs the data to the proper
storage positions on the correct processors. Figure 8 illustrates the read/shift
procedure for a parallel read operation. This technique minimizes the number of
read/write messages involving the IORAM and performs the data distribution in
a manner that has been optimized for the MasPar architecture. Details on the
implementation of the shift functions are provided in appendix B.

32

PE PE PE PE
0 12 3

rowO

row 1

row 2

row 3

o
o

o
o

o
o

• " -^
—-===== >.

row 0

row 1

row 2

row 3

o
o
o
o

11 Sf if
0 12 3

Figure 7. Cut-and-Stack for a Single Processor per Data Row

33

rowO

row1

row 2

row 3

o
o

o

o
0

o

Read
PEs PEs

0 12 3 4 5 6 7

liif iiii
row 0 row 1

Shift
PEs PEs

0 12 3 4 5 6 7

row 0 row 1

Figure 8. Read/Shift Parallel I/O

34

SECTION 6

MASPAR MPP ARCHITECTURE CONSTRAINTS

In this section, we examine performance constraints imposed by the MasPar
MPP architecture on the RT_2DFFT benchmark implementation and on real-time
performance in general. Performance of our RT_2DFFT implementation is highly
dependent upon the MasPar MPP processor type and the available hardware
resources: in particular, the amount of memory and the available bandwidth in
the sequential I/O subsystem bus. The quantity of available memory in each of
three separate memory subsystems affects performance—in particular, the amount
of PE memory, the amount of IORAM, and the amount of ACU memory. Con-
straints imposed by each memory quantity are discussed below for both maximum
hardware configurations and the actual configurations used to test the RT_2DFFT
implementation. In addition, we discuss the real-time processing constraints on
possible input array sizes imposed by the available bandwidth in the sequential

I/O subsystem bus.

PROCESSOR TYPE

The processor type (MP-1 or MP-2), number of processors, and the amount
of memory in the PE array directly affect the performance of the MasPar compu-
tational engine and the performance of our RT_2DFFT benchmark implementation.
For a given processor type, the number of PEs determines the amount of compu-
tational power (in Mflop/s) that the machine can deliver. Those capabilities were
summarized in Table 2. Theoretically, an MP-2 can perform five times the number
of floating point operations per unit time as the MP-1. As a result, a smaller MP-2
may be applicable for a RT_2DFFT benchmark requirement than an MP-1. Also
an MP-2 may be able to process larger input arrays in the specified input array
inter-arrival time than an MP-1. Empirical results, presented in section 7, support

these conclusions.

MEMORY

Regardless of the processing period specified in the RT_2DFFT benchmark, there
are some theoretical constraints imposed on the size of input arrays that can be
processed on a MasPar MPP due to maximum amounts of available memory.

35

The analysis in this section assumes that an entire input array must be loaded
into PE array memory at the same time to perform the RT_2DFFT benchmark.
Any out-of-memory technique would not be feasible for real-time applications. In
particular, the amount of PE array memory and the amount of IORAM memory
affect input array size and number of arrays that can be processed concurrently.
The amount of ACU memory affects the duration of the benchmark runs.

PE Array Memory

The amount of PE array memory is a function of the PE array size and the
amount of memory per processor, denoted by M. Since there are P PEs, the total
memory in the PE array is (P ■ M) bytes. There must be enough memory not only
to store the input array, but also to store the auxiliary plural variables required
for the calculation. Assuming that we have single-precision complex input arrays,
each array element is represented by eight bytes, and an n x n input array requires
(8 ■ n2) bytes. In addition, at least double this amount of memory is required for
auxiliary work space. Thus we need (24 • n2) < (P ■ M). This relationship can be
used to determine the largest input arrays that can be processed as a function of
the PE array size and the amount of memory per processor.

Table 4 presents the largest input array that can be processed as a function
of M and P. Both the NPAC MP-1 and the MasPar Corporation MP-2 used
for benchmark trials had 64 Kbytes of available memory on each PE—the corre-
sponding row in Table 4 is highlighted by the arrow. In particular, this table shows
that due to memory constraints, our RT_2DFFT implementation could examine no
input array of size greater than 4K x 4K. To examine 8K x 8K input arrays with
our RT_2DFFT benchmark implementation, a MasPar MPP with more memory
per processor would be required. It is important to note that due to memory
constraints, no single-precision complex input arrays larger than 8K x 8K can be
processed on either the MasPar MP-1 or MP-2.

IORAM Memory

The next memory constraint affecting performance is the amount of available
IORAM, the serial memory in the I/O subsystem used as the input array source
and output array sink. The IORAM must be sufficiently large that it can support
both data source and data sink functions. Thus the IORAM must have at least
(2 • 8 • n2) bytes of memory—for n = 2K, this corresponds to 64 Mbytes of storage.
Four times this amount, or 256 Mbytes, are required when n = 4K. Double
buffering requirements for actual processing would double these amounts. MasPar

36

Table 4. Maximum Input Array Size as a Function of MasPar MPP
Configuration

P
M IK 2K 4K 8K 16K

16K 512 IK IK 2K 2K
^64K IK 2K 2K 4K 4K
256K 2K 4K 4K 8K 8K

MPPs can be purchased with up to 1024 megabytes of IORAM (a gigabyte),
thus conceptually IORAM limitations would limit the potential maximum single-
precision complex input array size to 4K x 4K. Actual IORAM constraints on
available machines constrained our RT_2DFFT implementation to 2K x 2K input
arrays. This was achievable only by carefully managing the IORAM memory and
re-using the same buffer space in IORAM for both the input source and the output

sink and saving the input array in PE memory.

This reuse is achieved by first copying the source input array into PE array
memory before any timing information is collected. After we begin the benchmark
process, the initial time stamp is calculated, the input array is read in from the
data source, and the FFT is calculated. However, instead of writing the processed
array to the shared buffer, the stored input array is written out to the buffer.
Subsequent iterations of the benchmark repeat this cycle. After the RTJ2DFFT
benchmark has completed and all timing information has been gathered, the last
processed array is sent to the data sink buffer for verification processing.

ACU Memory

The last memory-based implementation constraint we encountered is a result
of the amount of serial memory available in the ACU. This problem is a side-
effect of the RT_2DFFT benchmark; in particular, timing information is stored on
the ACU when running the RT_2DFFT implementation to remove the impact of
accessing the UFE OS during a benchmarking trial. However, due to constrained
amounts of ACU memory on the available MasPar machines, some of the longer

37

benchmark runs—15 minutes in length as specified by the RT_2DFFT benchmark—
were impossible. This limitation is only a factor when the time to process an
input array is significantly less than a second.

I/O SUBSYSTEM BANDWIDTH

In addition to the RT_2DFFT implementation constraints imposed by finite
memory resources, another constraint on maximum data throughput exists: the
finite bandwidth of the bus within the I/O subsystem. Even though this bus
has the massive bandwidth of 230 Mbytes/s (megabytes-per-second), it can be a
sequential bottleneck. Due to bandwidth limitations, it is impossible to simul-
taneously load 4K x 4K unprocessed input arrays from an external source and
send the processed data to the frame buffer for display if the data arrives at a
rate of only one array-per-second. The bandwidth required to transfer 4K x 4K
single-precision complex input arrays into and out of IORAM at a rate of only
one array-per-second would be 256 megabytes-per-second (2 • (8bytes ■ (4K • 4K))).

During our experimentation with the MasPar RT_2DFFT implementation, we
never encountered this problem because the RT_2DFFT benchmark explicitly does
not require that external I/O be considered at this step. Theoretically, we could
configure the IORAM with sufficient memory to support 4K x 4K input ar-
rays; however, unless the bus bandwidth is significantly increased it would not be
possible to move data to and from IORAM. Consequently, the finite bandwidth
sequential I/O channel bus is an inherent limitation that will effect the extensi-
bility of the present overall MasPar architecture to real-time processing of large
matrices.

CONCLUSION

In this section, we described various constraints attributable to the MasPar
MPP architecture for two-dimensional applications with single precision complex
data array elements. Constraints on maximum PE memory impose a potential
limitation on input array sizes to 8K x 8K rows and columns. Furthermore,
maximum IORAM memory constraints reduce the maximum input array size to
4K x 4K rows and columns, and maximum I/O subsystem bandwidth constraints
further reduce the maximum input array size to only 2K x 2K rows and columns.
These constraint numbers assume that the problem output is as large as the
problem input array, as specified in the RT_2DFFT benchmark. The maximum

38

input array size of 2K x 2K falls significantly short of the 16K x 16K maximum
input array size stated in the RTJ2DFFT benchmark specification. However, in
many applications, entire two-dimensional arrays are read in and processed, but
only minimal information, e.g., detections, are output. For applications that do
not produce output streams with as much data as the input stream, the size of the
problem that could be considered with current systems would effectively double.

39/40

SECTION 7

MASPAR PERFORMANCE RESULTS FOR THE RT_2DFFT
BENCHMARK

In this section, we describe the real-time performance of our RT_2DFFT bench-
mark implementation. We have exercised the MasPar RTJ2DFFT implementation
for a variety of input array sizes, machine sizes, and the latency cases—all con-
figuration values are specified in the RT_2DFFT benchmark. The hardware config-
urations for both the NPAC MP-1 machine and the MasPar Corporation MP-2
machine on which we collected the data are described above in section 3.

The RT_2DFFT benchmark specification requires that basic clock functions
be examined to form a baseline with which to measure real-time performance.
Properties of the clock and the methods employed to time our performance runs
are described in the first subsection. After the timing subsection, there are
five subsections that evaluate the empirical data collected when exercising our
implementation. We first compare two techniques for moving the input data from
the data source to PE array memory and the processed data from the processor
memory to the data sink. We present empirical data to illustrate the tradeoffs
between performing I/O directly with the IORAM and by performing the I/O in
a more convenient manner but shifting the data to the proper PE array memory
locations. In the next subsection, we examine empirical data collected during
extended RT_2DFFT implementation tests with durations as long as 15 minutes.
Empirical performance data collected during these extended runs permit the
assessment of any effect that the UFE OS may have on the real-time performance
of our implementation. We have found that real-time performance is predictable
with the most variance in empirical timing data due to the side effects imposed
by calling the clock.

Because of the predictable near absence of variation observed when running the
MasPar RT_2DFFT benchmark implementation, the last three subsections focus on
a parametric analysis based on a set of shorter runs, typically consisting of only
ten iterations. In these subsections, we only present a summary of the data;
an extensive listing of the empirical data is tabulated in appendices C and D
for the MP-1 and MP-2 respectively. We first describe the empirical results for
processing a single input array at a time—relevant to the latency-equals-period
case in the RT_2DFFT benchmark specification. We next describe empirical results
for processed multiple input arrays concurrently—relevant to the latency-greater-

41

than-period case. In the final subsection, we examine scalability of a real-time,
embedded system. We first identify the smallest machine—for both MP-1 and
MP-2—that is required to meet the RTJ2DFFT benchmark specification of a one-
second input array inter-arrival time or maximum output period for various input
array sizes. Then we examine sustained processor utilization as a function of input

array size and machine size.

TIMING MEASUREMENTS ON THE MASPAR MPP

Access to a clock in our RT_2DFFT benchmark implementation used MpTimer
routines that measure elapsed time using the clock capabilities in the UFE. The
RT_2DFFT benchmark specifies that wall clock time be used in the implementation.
The MasPar clock function meets this requirement—it continues to run even
when the implementation, running on the ACU and PE array, is swapped out
or otherwise interrupted.

. We were unable to use a high resolution timer on the ACU because of un-
specified implementation problems with the function calls. It would have been
desirable to have had a timer located on the ACU and PE array to eliminate
any interaction with the UFE. It would also have been desirable to have a higher
resolution clock than was available for use.

To test timing variability, we ran the repeated clock benchmark as described
in (Brown, 1994). The clock benchmark repeatedly calls the elapsed timing rou-
tine in a tight loop and stores the elapsed times between calls. Differences between
successive times, called deltas, can be analyzed during post processing to measure
clock variability. The measured deltas can be used to examine the clock resolution
of the timing functions. When the elapsed times between clock calls is less than
the clock resolution, the data will be reported as either zeros or the minimum
clock resolution. Clock resolution depends on the UFE type and its OS. For the
MP-1, we were limited to a resolution of about 4 milliseconds; on the MP-2 the
resolution was about a 1 millisecond. The actual time to perform the function
call to obtain elapsed time varied, often greatly. We suspect that a clock call is
highly dependent on UFE activity.

Effects due to the UFE can be inferred from the number of clock calls made
within the clock resolution and from the size of measured deltas. For example,
on the MP-1 UFE, we found the number of clock calls that could be completed
within the clock resolution—about 4 milliseconds—varied from 18 to 60 calls. The

42

distribution of the calls was trimodal with peaks at about 20, 40, and 60 calls.
The worst case, when only 20 calls were completed in 4 milliseconds, indicates
that about 200 microseconds are needed for the clock call. Although we did not
run the clock benchmark on the UFE of the MP-2, we did run it on a DEC
Alpha Workstation with the same OS. We found that the number of calls within
the one-millisecond clock resolution varied between 243 and 287 with distribution
peaks at 274 and 286.

Besides the variability of the clock call time, there is also variability indicated
by deltas being larger than the resolution. These large deltas are due to process
activity on the UFE—the clock call must wait until the OS can process it. OS
activity can be a result of other users being processed by the OS; however, there
are also many system daemons that the OS must service periodically. In one clock
benchmark on the MP-1, we noticed a delta of 100 milliseconds. This large delta
indicates the difficulty in measuring real-time performance using a non-real-time
OS. Timing using the test bench should not induce side-effects that are more
significant than the predictability we are attempting to measure. We attempted
to minimize side-effects by being sole user on the MasPar UFEs as we ran our
RT_2DFFT implementation.

The differences that we have noted between machine types are only one of scale.
The same problem exists on either UFE machine type—OS activity—ignoring the
interference of other user processes.

The RT_2DFFT benchmark implementation processing loop consists of the fol-
lowing operations:

1. Read data from the IORAM to the PE array,

2. Compute ID FFTs on the rows,

3. Perform a corner turn on every data array,

4. Compute ID FFTs on the columns,

5. Write the data from the PE array to the IORAM.

We implemented two types of clock insertions; they are illustrated in the two
diagrams in Figure 9. Each diagram shows the processing operations in the
loop. The top diagram shows that block timing has clock insertions between each

43

Block Timing

Read
from IORAM
to PE Array

Compute
IDFFTs
on Rows

Perform
Corner Turn

Compute
IDFFTs

on Columns

Write
from PE Array

to IORAM

Clock Clock Clock Clock Clock

Global Timing
«^

Read
from IORAM
to PE Array

Compute
IDFFTs
on Rows

Perform
Corner Turn

Compute
IDFFTs

on Columns

Write
from PE Array

to IORAM

Clock

Figure 9. Timing Insertion Options

operation to time each separately; this requires five separate calls to the system
clock. The bottom diagram in Figure 9 shows that global timing has only one
clock insertion in the complete processing chain, only one call to the system clock
is made during each loop iteration. The clock insertion method is specified at run
time. Except for the time required to perform the additional four clock calls, we
expect that the sum of times for the individual operations in block timing should
be similar to global timing. Timing variability for block timing will be greater
than timing variability for global timing because of each of the multiple timing
calls contributes to an aggregate variability.

Since a single clock on the UFE was used, there was no requirement for
synchronizing clocks at the processors or at the data source and data sink. A single
clock insertion was placed at each of the locations within the code as indicated in

Figure 9.

44

PARALLEL INPUT COMPARISON

We examined two parallel I/O implementations: one that reads input array
data directly to processors in the required cut-and-stack data mapping, and an-
other that reads the input array data in a more efficient manner by portions of
rows but then requires data communications to shift the data into the required
cut-and-stack data mapping. Empirical data shows that, in all situations of in-
terest, the read/shift operation for parallel data array I/O from/to the IORAM is
more efficient than cut-and-stack I/O operations. We present data in Table 5 to
illustrate the improved performance of the read/shift operation compared to the
cut-and-stack for multiple processors per data array row. Table 5 presents data
for comparing the time to perform:

1. One parallel input array read from IORAM,

2. One parallel output array write to IORAM,

3. One loop combining the I/O and the two-dimensional FFT.

The results are for 512 x 512 input arrays and for IK to 16K processors. The
timing data are for distributing a single input array over all processors. The data
were collected in short duration benchmarking runs performed on the MP-1. The
system configuration for this machine is presented in section 3.

In all PE array size combinations reported in Table 5, read/shift is better than
cut-and-stack. The results are representative of all input array sizes examined in
this analysis; however, other experiments did show that cut-and-stack is superior
for small input arrays (256 x 256) on 8K and 16K processor machines. In these
cases, the time to process the single input array is significantly less than the time
required to perform the operation as specified by the RT_2DFFT benchmark, so a
smaller machine would be used.

We conclude that for parallel I/O, it is better to read from the IORAM in
the fastest way possible using parallel strides, and then to add the interprocessor
communication step to rearrange the data to the correct data mapping. This
shift operation is similar to the corner turn that we use between individual one-
dimensional FFTs as we perform a two-dimensional FFT. Appendix B contains a
more detailed discussion of how these rearrangements are implemented.

45

Table 5. Comparison of Row/Shift versus Cut-and-Stack Data Array
I/O—512 x 512 Array

Times in milliseconds
p I/O Algorithm Read Write Loop

IK read/shift 312 258 1094
cut-and-stack 469 426 1414

2K read/shift 163 137 593
cut-and-stack 243 226 755

4K read/shift 78 67 302
cut-and-stack 125 106 382

8K read/shift 27 25 134
cut-and-stack 63 55 200

16K read/shift 19 20 86
cut-and-stack 20 20 82

EXTENDED-DURATION TESTS

One main requirement in the RT_2DFFT benchmark specification is that the
implementation should be run for 15 minutes. Given the requirement for a one-
second maximum output period, we are examining at least 900 iterations that
should give an adequately large sample to fully understand real-time performance
predictability. Besides confirming that period requirements can be met, the
extended-run time also allows us to assess what effect, if any, the operating
system has on the real-time performance. Such an effect would manifest itself as
some processing times being significantly larger than the rest. We use maximum
latency and maximum output period as the metrics to describe performance in
a benchmark run to ensure predictable real-time performance. During a run,
timing information is stored on the MasPar ACU using either block or global

46

timing as described above. The initial iteration of the processing loop is ignored.

All analysis is performed in post processing.

To ensure that there are no drastic timing effects due to our benchmark
implementation being interrupted and swapped-out, we only collected timing data
when we were the sole process running on the ACU and PE array. The extended
runs that we show are all based on processing a single input array at a time, so they
are relevant to the latency-equals-period case. Similar extended run results for
multiple input arrays have been analyzed, but they are not presented here, because
like the single input array cases, they did not show anything that demonstrates a
significant disruption to real-time performance.

We first present the empirical data for a 15 minute run on the MP-1 in

Figure 10. This figure contains three graphs:

1. A time plot for the 15 minute run,

2. A histogram for block timing,

3. A histogram for global timing.

The top graph in Figure 10 shows a typical 15-minute RTJ2DFFT implementation
run on an MP-1 configured as a IK machine. A single 512 x 512 input array was
processed by the entire PE array. The data in this graph were generated using
block timing and the graph displays the accumulated time for each operation in
the processing loop. Thus the top curve (labeled "IORAM Write") marks the
total time to process a single loop iteration. The x-coordinate indicates the time
in seconds when the processing of the input array started. This graph shows the
relative time spent between I/O and FFT processing; slightly more than half of
the time is spent moving data from the data source to the PE array and from
the PE array to the data sink. Notice that the total time required is consistently
around 1100 milliseconds; in particular, this run shows that a IK MP-1 cannot
meet the target maximum output period specification of one-second.

The thickness of the curves in the top graph of Figure 10, which is a plotting
artifact due to the size and closeness of the characters used to represent the
data points, makes it difficult to examine variability during the 15 minute run.
The bottom portion of Figure 10 shows two histograms that are better suited to
examine processing variability. On the left we present a histogram derived from
block timing, in particular, for the times corresponding to the "IORAM Write"

47

1200

1000

M BOO
■a

= 600
I

400

200

Extended Run of 512 x 512 Array on 1K MP-1
-i 1 1 1 1 1 1 1

mm mmmmmmmme

mm

 . , , „_, , , . . , , „, Corner Turn
mfrmHiim^^ FFTs on Rows SB

IORAM Write

MIPWIW FFTs on Columns

IORAM Read

100 200 300 400 500 600 700
Time (seconds)

800 900

Histogram of MP-1 Run using Block Timing

e
3
cr

it

Histogram of MP-1 Run using Global Timing

1080 1090 1100 1110 1120 1130
Time (milliseconds)

3
cr

1080 1090 1100 1110 1120 1130
Time (milliseconds)

Figure 10. Processing a Single 512 x 512 Input Array on a IK MasPar MP-1

curve. There is approximately a 40 millisecond range in the histogram. This
range is about 4% of the total time for processing the entire loop (about 1100
milliseconds).

Since the times for the left histogram in Figure 10 are based on summing the
timings for the five operations—requiring five separate calls to the clock—we were
concerned that the variability was influenced by the additional clock calls. We
reran the 15 minute test using global timing and present a histogram for this
timing option on the right in the figure. The range has dropped to only about 15
milliseconds, which results in a more peaked histogram. The arithmetic mean time

48

has shifted lower by about 20 milliseconds. These changes can be explained by
the reduced number of clock calls. The results are consistent with timing behavior
observed in the clock benchmarks run on the MP-1 UFE (discussed above).

In Figure 11, we present empirical performance graphs for the MP-2 machine.
The presentation is similar to Figure 10, except that we include only a single
histogram for block timing data. We again process a single 512 x 512 input array
with the machine configured with a IK PE array. The top graph in Figure 10
shows the accumulated block times for a single loop to process the input array.
The run duration was only six minutes, due to ACU memory limitations for storing
the timing arrays. The timing curves in Figure 11 illustrate less variability than
those in Figure 10. We present a histogram—based on block timing—in the
bottom portion of Figure 11 to examine this variability. The range of data in the
histogram is only six milliseconds, which is about 1.5% of the total time. The
reduced variability for the MP-2 run is most likely due to the clock, which has
both better resolution and a faster call time for the Alpha workstation-based UFE.

Although not presented here, we have examined graphs similar to those in
Figures 10 and 11 for both machine types and various input array sizes, various
machine sizes, and various numbers of simultaneously processed input arrays.
Almost all of the extended runs for both the MP-1 and MP-2 showed the same
minimum amount of variability that we have observed in these figures. The few
exceptions were most probably due to the presence of other users on the UFE or
to operator interference.

LATENCY-EQUALS-PERIOD CASE

This section describes empirical results for processing each input array as it
arrives—corresponding to the case where the latency must equal the period. Be-
cause of the extremely small amount of run-time variability that we observed above
for the extended duration tests, this in-depth parametric performance analysis has
been based on data obtained in shorter duration tests of the MasPar RTJ2DFFT
implementation. We collected statistics for runs of only ten iterations of the
processing loop after ignoring the initial iteration. All runs have been duplicated
for both block and global timing. Note that the total time for the run will vary
from the sum of the pieces, since they are based on separate timing insertions and
separate runs. A complete listing of the empirical performance data is presented
in appendix C for the MP-1 and in appendix D for the MP-2.

49

500

450

400

350

Extended Run of 512 x 512 Array on 1K MP-2

■D
C
O 300
u
a 250
F
Q) 200
E
h-

150

100

50

i I I I I I I r

IORAM Write

K FFTs on Columns

Corner Turn

«MM mm mmmmmmmmmmmmmmmmmmmmmm FFTsonRows

IORAM Read

50 100 150 200 250 300
Time (seconds)

350 400

Histogram of Extended MP-2 Run using Block Timing
0.4

410 420 430 440 450
Time (milliseconds)

460

Figure 11. Processing a Single 512 x 512 Input Array on a IK MasPar MP-2

In Table 6, we present the maximum processing period for a single input array
using global timing for all available machine sizes and for four different input
array sizes, 256 x 256, 512 x 512, IK x IK, and 2K x 2K. As we examine
real-time performance, we are interested in examining variability. The maximum
processing period represents the worst-case situation, and is an estimate of the
time required for the operation to be processed and maintain the predictability
required of a real-time system. An "—" indicates that a timing value is not
available for those parameters. The current version of the RT_2DFFT benchmark
implementation cannot process a 2K x 2K input array on a IK machine—we have
not implemented a two-dimensional FFT algorithm where there are multiple rows

50

Table 6. Maximum Times in Milliseconds for Latency Equals Period

MP-1 MP-2
n IK 2K 4K 8K 16K IK 2K 4K

256 282 126 54 51 40 119 67 31
512 1094 593 302 134 86 427 249 131
IK 3359 2341 1411 684 313 910 964 525
2K — 7539 5641 2969 1500 — 2202 2079

Table 7. Sustained Processing Rate in Mflops/s for Latency Equals
Period

MP-1 MP-2
n IK 2K 4K 8K 16K IK 2K 4K

256 18.6 41.6 97.1 102.8 131.1 44.1 78.3 169.1
512 21.6 39.8 78.1 176.1 274.3 55.3 94.8 180.1
IK 31.2 44.8 74.3 153.3 335.0 115.2 108.8 199.7
2K — 61.2 81.8 155.4 307.6 — 209.5 221.9

from the same input array being assigned to a single processor. We have not been
concerned with this implementation scenario because there is not enough PE array
memory on the available machines to run this case. The empirical timing data
in Table 6 has been used to generate Table 7, in which we present the sustained
processing rate in Mflops/s for the latency-equals-period case. The calculation of
Mflop/s uses 10n2 log2 n for the number of operations.

The times in Table 6 indicate how the period scales with respect to input array
size and machine size. Similar scalings are apparent in Table 7 in the Mflops/s
rate. The times for the MP-1 decrease and the Mflops/s increase as the machine
size increases—as expected—but sometimes in a super-linear manner (consider

51

256 x 256 input arrays). This speed-up could be an artifact of the software-
based technique to reconfigure the machines to simulate smaller machines. The
times and Mflops/s rate for the MP-2 show an almost linear speed-up with
respect to machine size, except for the IK x IK input array on the IK and 2K
machines. In this case, the processing time actually worsens when the machine
size is increased. This is caused by the relationship between computation and
communication capabilities on the MP-2. This machine has faster processors but
the same communication routers and networks as the MP-1. When expanding

the machine size from a IK to a 2K PE array for a IK x IK input array, we
spread a row of data over two PEs rather than just one. Additional interprocessor
communications are required, which results in an increase in communications time
that evidently is greater than the decrease in computation time due to the added
parallelism.

Scaling is approximately linear with respect to the size of the input array, n2.
That is, if n doubles, we expect about a factor of four increase in the processing
time. The data in Table 6 scale in this manner, except in the situation when a
row is mapped to a single PE on the MP-2. For example, the time only roughly
doubles when going from a 512 to a IK input array on a IK MP-2. The reason for
this anomaly lies again in the reduced internal communications that occur when
an entire input array row is mapped to a PE.

If we compare comparable parameter values for the MP-1 and MP-2 in Tables 6
or 7, there generally is a speed increase of a factor of 2-3 for an MP-2 versus an
MP-1. However, MasPar advertises that there is a 5 fold increase in peak floating
point processing rate for an MP-2 compared to an MP-1 (see Table 2). We are
not able to obtain this increase in performance with the RT_2DFFT benchmark
implementation, because the MP-2 communications capabilities have not been
improved.

For the performance of any parallel application implementation to scale with
processor improvements in a new architecture, the communications capabilities
must improve as much as the processor performance. Formulas are provided in
(Koester, 1995) that quantify this relationship, and they can be used to esti-
mate performance if communications and calculations capabilities do not increase
equally.

52

LATENCY-GREATER-THAN-PERIOD CASE

This section describes empirical results for processing multiple input arrays
simultaneously—corresponding to the case where the latency can be greater than
the period. As in the previous subsection, our results are based on short runs
that are typically ten replications of the processing loop after ignoring the initial
iteration. All runs have been duplicated for both block and global timing. A
complete listing of the empirical performance data is presented in appendix C for
the MP-1 and in appendix D for the MP-2.

If latency is permitted to be greater than the period, we show that it may be
possible to reduce the machine size by processing multiple FFTs simultaneously.
In particular, if an entire row of a two-dimensional input array is assigned to a
single processor, we will show that the RT_2DFFT benchmark runs more efficiently,
because communications overhead is minimized during both I/O and FFT process-
ing. In this analysis, we are interested in total time to process the block of input
arrays divided by the number of input arrays being processed simultaneously. This
normalized single problem processing time must be less than or equal to the one
second period specification. This notion of maximum output period will be used
extensively as the metric to evaluate RT_2DFFT implementation performance for
this latency case.

The RT_2DFFT benchmark implementation is designed to process any power-of-
two numbers of input arrays up to the memory capacities of the machine. In fact,
we have found that we only need to consider two cases: processing one input array,
which we considered above for the latency-equals-period case, and processing one
full tier of input arrays for the latency-greater-than-period case. A full tier of
input arrays occurs when we process the precise number of input arrays that the
aggregate number of input arrays rows equals the number of processors in the PE
array. In Figure 12, we present empirical (worst-case or maximum output period)
performance data that illustrates this claim. In this graph, we show three families
of curves for the maximum output period for various number of input arrays when
we process 512 x 512 input arrays on the MP-2 machine. There are individual
curves for the three available machine sizes. Each of the three curves have a similar
shape—maximum output period decreases as additional input arrays are processed
simultaneously, then each curve levels off when there is exactly one input array
row per PE. The number of input arrays required to achieve a full tier with one
input array row per PE is indicated in the legend of Figure 12. Performance does
not improve for additional tiers of input arrays: therefore, during the remainder

53

■a
c
o

O

500

450

400

350

300

250

200

150

100

50

0

Multiple 512x512 Arrays on MP-2

-

i I i

Full Tier for 1K MP-2 at 2 Arrays -

_ Full Tier for 2K MP-2 at 4 Arrays _

-

+ • 0 P

Full Tier for 4K MP-2 at 8 Arrays

1KMP-2

-

-

"" "Q

 1. 2K MP-2

 ■& 0 4K MP-2

-

I 1 I I i '

4 8
Number of Arrays

16 32

Figure 12. Period for Multiple 512 x 512 Input Arrays

of this subsection, we only consider processing a single, full tier of input arrays
when discussing the performance for the latency-greater-than-period case.

In Table 8, we present the maximum run times for both latency and period
for all machine and input array sizes. For each machine size and input array size,
we give the number of input arrays processed (NA) followed by the latency (Lat)
and the normalized time per input array or maximum output period (Per). In
general, the entries are from configurations with a full tier of input arrays, with a
full input array row assigned per PE. There are two exceptions:

1. The entry marked with a t appears to be an anomaly and may be an
artifact of the configuration software.

2. The entries marked with a * are cases when a full tier of arrays could not
be processed due to the size limit of the IORAM.

We ignore these exceptions as we analyze the data. In a manner similar to the
latency-equals-period case, the empirical timing data in Table 8 have been used
to generate Table 9, in which we present the sustained processing rate in Mflops/s
per input array for the latency-greater-than-period case.

54

Table 8. Maximum Times in Milliseconds for Latency Greater than
Period

MP-1 MP-2

n IK 2K 4K 8K 16K IK 2K 4K

256 NA 4 8 It 32 64 4 8 16

Lat 793 793 54 1031 1031 219 221 251

Per 198 99 54 32 16 55 28 16

512 NA 2 4 8 16 16* 2 4 8

Lat 1743 1727 2180 2187 1345 510 539 608

Per 872 432 273 137 84 255 135 76

IK NA 1 2 4 4* 1* 1 2 4

Lat 3359 3466 4379 2828 313 910 1071 1212

Per 3359 1733 1095 707 313 910 536 303

2K NA 1 1* 1* 1* 1 2

Lat — 7539 5641 2969 1500 — 2202 2589

Per — 7539 5641 2969 1500 — 2202 1295

t Anomaly perhaps due to configuration software.
A. full tier of input arrays could not be srocessed due to IORAM s

limitations.

The maximum output period in Table 8 and Mflop/s per input array in Table 9
scale nearly linearly with respect to machine size; the maximum output period is
halved as the machine size doubles and the Mflop/s per input array doubles with
machine size. Furthermore, the maximum output period scales with input array
size as we expect: a factor of four increase in time as n doubles. In particular, the
effect that we observed when processing a single input array with the IK and 2K
MP-2—the maximum output period increasing as the machine size increased—
does not occur when we process only full tiers of input arrays. The explanation
for this is simple—as we increase machine size we also increase the number of
input arrays, always mapping an entire input array row to a PE. Consequently,
there never is an increase in the amount of communications.

55

Table 9. Sustained Processing Rate in Mflop/s for Latency Greater
than Period

n IK 2K
MP-]
4K 8K 16K IK

MP-2
2K 4K

256 NA

Mflop/s
4

26.4
8

52.9
It

97.1
32

162.7
64

325.5
4

95.8
8

189.8
16

334.2

512 NA

Mflop/s
2

27.1
4

54.6
8

86.6
16

172.6
16*

280.7
2

92.5
4

175.1
8

310.4

IK NA

Mflop/s
1

31.2
2

60.5
4

95.8
4*

148.3
1*

335.0
1

115.2
2

195.8
4

346.1

2K NA

Mflop/s —
1

61.2
1*

81.8
1*

155.4
1*

307.6 —
1

209.5
2

356.4

t Anomaly perhaps due to configuration software.
* A full tier of input arrays could not be processed due to IORAM size

limitations.

We can also use the data in Table 8 and Table 9 to examine the actual per-
formance improvement for the MP-2 over the MP-1. The empirical performance
of the MP-2 shows a speed up of 3-4 over the MP-1. We see a greater increase
in performance here than in the latency-equals-period case because interprocessor
communications are eliminated while performing the one-dimensional FFTs—each
entire row is placed on a single processor.

Finally, comparing Table 6 with Table 8 shows how processing multiple input
arrays can reduce the machine size. For example, consider 512 x 512 input
arrays on an MP-1—a single input array has a maximum output period of 1094
milliseconds on a IK machine: thus a larger 2K machine would be required to meet
the period equals one second input array inter-arrival specification. On the other
hand, the maximum output period for two input arrays processed simultaneously
is only 872 milliseconds on the IK machine. Thus the improved efficiency of
processing two input arrays simultaneously permits a smaller machine size to

56

meet the timing specification. In the next subsection, we extend this analysis as

we examine real-time scalability.

SCALABILITY OF REAL-TIME EMBEDDED SYSTEMS

The fundamental goal of the RT_2DFFT benchmark specification is to examine
scalability of real-time embedded high performance computing systems. The
objective of the RT_2DFFT benchmark scalability study specification, presented
in appendix A, requires that we determine the minimum machine size that meets
the real-time requirement of fixed maximum output period. For reasons described
in section 6, we have only been able to examine a subset of the input array sizes
required by the specification—256 x 256, 512 x 512, IK x IK, and 2K x 2K.

The RT_2DFFT benchmark specification requires two separate graphs be gen-
erated to demonstrate scalability of the implementation. We first examine the
minimum machine size as a function of problem size, then we examine the sus-
tained processing utilization percentage as a function of problem and machine

size.

Minimum Machine Size

Using the data presented in Tables 6 and 8, we can determine the smallest
MP-1 and MP-2 that can meet the one-second input array inter-arrival time
specification for the two latency cases. We present two graphs in Figure 13
to identify smallest machine size for the two latency cases. Both graphs use
the machine names as point labels and "MP-1,2" indicates that both machines
achieved the specification with that machine size. The left graph shows the
minimum machine size for the latency-equals-period case. Neither the MP-1 nor
the MP-2 could process a 2K input array in the required time, even with the
maximum configuration of a 16K PE array for the MP-1. The right graph shows
the minimum machine size for the latency-greater-than-period case. Although an
8K MP-2 was not available to test the RT_2DFFT implementation, it seems likely
that an 8K MP-2 could meet the specification for input arrays of size 2K by
processing a full tier of four input arrays.

These plots assume that the necessary amount of IORAM is available and
that the memory per PE is 64 Kbytes (recall Table 3). Note that having more
PE memory available would not effect these plots, because the number of input

57

16K -

m 8K
N

8 4K

o
| 2K

Latency Equals Period

1K -

-
I I I I

-

- MP-1 -

- -

- MP-1 -

- MP-1,2

i

MP-2

i

MP-2 -

256 512 1K
Array Size

2K

16K -

8K

2K -

1K

Latency Greater than Period

-
I I I I

-

MP-1 (MP-2)

- MP-1,2 MP-1,2

i i

MP-2

I I

256 512 1K 2K
Array Size

Figure 13. Smallest Machine Size for Various Input Array Sizes

arrays in a full tier is independent of the PE memory as long as there is enough
memory to accommodate a whole row on a PE.

The only difference between the two plots in Figure 13 is the case of512x512
input arrays on MP-ls, highlighted above in the previous subsection, and presum-
ably the 2K x 2K input arrays. The fact that removing the latency restriction
does not reduce the machine size in more cases is due to numerous factors. The
primary factor is that MasPar machines are available only in discrete power-of-two
sizes; so, the graphs in Figure 13 are relatively sparse. Because of the discrete
nature of the number of processors, varying the specified maximum output period
may cause this graph to look substantially different.

This graph does illustrate two interesting scalability issues for the growth in
machine size for two-dimensional problems. First, for input array sizes 256-1K,
especially with the faster MP-2, our RT_2DFFT benchmark has period less than
the specified one second—often substantially less. In these cases, the minimum
machine size—IK processors—will be chosen. Secondly, after the maximum pe-
riod for the IK machine is greater than the input array inter-arrival time, then
the graphs in Figure 13 show an interesting fact—the increase in machine size is
a factor of four for every time the number of rows is doubled. This shows some
potential real-time scalability challenges when attempting to use the MasPar ar-
chitecture for two-dimensional problems. As we scale the size of the problem, the
MasPar MPPs will require the maximum 16K processors after doubling the input
array size only twice.

58

Sustained Processing Utilization

To conclude this section on real-time scalability, we examine the sustained pro-
cessing utilization percentage as a function of problem and machine size. Sustained
processing utilization percentage is defined in appendix A as the quotient of the
sustained processing rate divided by the theoretical peak processing rate. The sus-
tained Mflops/s processing rate is defined as 10n2 log2 «/(maximum period). Note
that this metric uses the maximum period for a benchmark run, which means any
performance disruption due to the OS that would affect real-time predictability

is factored into this metric.

Our definition of sustained processor utilization percentage should be used
for relative comparisons, rather than as an absolute metric. We have observed
percentages approaching 100%—a situation that is seemingly impossible, since
we use the maximum Mflops/s rating for the machine in the calculation. An
explanation for these observations may be found in the formula used to calculate
the number of floating point operations for an FFT: 10n2 log2 n. The actual
number of floating point operations may be less. It is conceivable that the built-in
FFT routines have been optimized to limit the number of floating point operations
at the expense of more complicated code relying on faster integer operations.
Consequently, the true sustained processor utilization percentages are most likely

lower than what we report below.

We present graphs of sustained processing utilization in two different formats:

1. Sustained processing utilization as a function of input array size for the
2K processor MasPar MPPs (Figure 14),

2. Sustained processing utilization for various machine sizes (Figure 15).

Each of the figures has two separate graphs—for both the MP-1 and MP-2 ma-

chines.

In Figure 14, we present families of curves in each graph of sustained processor
utilization versus input array size for:

• Full tier (FFT)—considers only timing for the FFTs and corner turn for
adequate input arrays that a full row is assigned to a single processor,

59

100

£. 80
c o

I
5
O) c
» » a o
o
a.

Sustained Processing Utilization for 2K MP-1

60

40

20

Full Tier (FFT)

Single (FFT)

Full Tier (Total)

Single (Total)

256 512
Array Size

1K 2K

100

e. BO

Sustained Processing Utilization for 2K MP-2

3
O)

2
a.

3
V)

60

40

20

Full Tier (FFT)

Full Tier (Total)
Single (FFT)
Single (Total)

256 512
Array Size

1K 2K

Figure 14. Sustained Processing Utilization for 2K MasPar MPPs

Full tier (Total)—considers both FFT and I/O timings for adequate input
arrays that a full row is assigned to a single processor,

Single (FFT)—considers only timing for the FFTs and corner turn for a
single input array,

60

100

e. so

5 60
O)

S 40
0.

Sustained Processing Utilization for Single Array (FFT) on MP-1

20

 1 ■—1 -* ■ 1

-
/ /

*"

-

1KMP-1 o ,.—■&■--"" ^•'•'-'■•■■■><- """

. 2KMP-1 +—';."7"::"""""^.....—* I--'''''' -

-

4KMP-1 B-- ^-" ^,.,--'

8KMP-1 x"""

16KMP-1 *""'

, , i 1

-

256 512
Array Size

1K 2K

100

£, 80

5 60

S 40
0-
13

S 20
in

Sustained Processing Utilization for Single Array (FFT) on MP-2

-

1 —1 1 1—■

t> 1KMP-2

-

/ ,+ 2K MP-2

4K MP-2

'

__

i i

256 512 1K
Array Size

2K

Figure 15. Sustained Processing Utilization for Various Machine Sizes

• Single (Total)—considers both FFT and I/O timings for a single input

array.

Sustained processor utilization is significantly better for the full tier case than
the single input array case, until such a point that a single input array meets

61

the criteria of also being full tier. This occurs when we examine performance of
a 2K input array on the 2K processor machine. In general, sustained processor
utilization is monotonically increasing for the single input array case; however,
this cannot be said for the full tier case. This is not unexpected, because there
is reduced communications as input array size increases for a single input array.
Meanwhile, for the full tier case, the amount of communications remains fixed,
and only the communications pattern changes for the corner turn.

When comparing the two graphs in Figure 14, we can compare the performance
for the MP-1 and MP-2. The sustained processor utilization is much higher for
the slower MP-1, because while the MP-2 has faster processors, interprocessor
communications capabilities remain the same. The differences in sustained pro-
cessor utilization is significant for the two machines. Full tier FFT sustained
processor utilization is generally greater than 90% for the MP-1; meanwhile, the
corresponding curve for the MP-2 shows that sustained processor utilization is
less than 60%. As stated above, this disparity in performance is caused by the
relationship between computation and interprocessor communications on the two
machines.

When comparing sustained processor utilization for FFT-only and total tim-
ings, it is evident that we cannot hide the I/O from the simulated data source and
to the data sink. Because of the SIMD nature of the MasPar MPPs, there is no
way to double buffer data as it is moved from the data source to the PE array and
back to the data sink. Sustained processor utilization for floating point operations
is greatly reduced when the time for I/O is included in maximum period.

In Figure 15, we present families of curves in each graph of sustained proces-
sor utilization for all possible machine sizes with which we tested the RT_2DFFT
implementation. Again, there are separate graphs for each of the two machines
with five separate curves for sustained processor utilization on the MP-1 and
three separate curves for the MP-2. We present sustained processor utilization
curves only for the FFT-only timings for a single input array. This figure shows
that sustained processor utilization is better for smaller machines—an observation
that should be obvious because there is reduced interprocessor communications
required to perform a two-dimensional FFT when more data is on each processor
that performs the one-dimensional FFTs on the rows and columns. There is
better sustained processor utilization on the MP-1 than the MP-2, although there
is greater variance for small input array sizes on the MP-1 than on the MP-2.

62

It is instructive to examine those points in Figure 15 that correspond to
the minimum machine that meet the one second period constraint for the case
when the latency equals the period. For the MP-1, a nearly constant FFT-only
utilization percentage between 40% and 50% is maintained as the input array
size is increased from 256 to IK. Maintaining constant resource utilization as the
problem size increases is very useful from the standpoint of embedded applications.

This figure also shows that sustained processor utilization follows a trend com-
mon with the other scalability metrics in parallel processing—as we increase the
number of processors, we must increase the input array size or problem size, other-
wise sustained processor utilization can decrease significantly. This is attributed
to interprocessor communications overhead. As we spread a constant amount
of work over additional processors, there will be additional communications—
overhead that is not be encountered on the smaller machine size. In general,
there may also be unavoidable sequential processing that does not map to the
larger machine.

63/ 64

SECTION 8

CONCLUSIONS

This paper reports on the implementation of the RT_2DFFT benchmark devel-
oped for the MasPar MP-X series of MPPs. This is the first attempt to extend the
real-time embedded benchmarking methodology described in (Games, 1996) to a
platform other than the Intel Paragon. Our conclusions are divided into three
subsections. In the first subsection, we present our conclusions on the lessons
learned relative to the overall real-time embedded benchmarking methodology.
We then present our conclusions on the performance of the MasPar RT_2DFFT
benchmark implementation. In the last subsection, we include a discussion of
transitioning our results for the MP-1 and MP-2 machines to MasPar's newest
machines, the MP-3 and a scalable ensemble processor.

REAL-TIME EMBEDDED BENCHMARK METHODOLOGY

An important motivation in developing the MasPar RT_2DFFT benchmark im-
plementation was to evaluate the overall real-time embedded benchmark method-
ology proposed in (Games, 1996). Our RT_2DFFT implementation revealed little
yet unseen in previous work on the Intel Paragon (Brown, 1994; Brown, 1995),
even though there are significant architecture differences between the MIMD Intel
Paragon and the SIMD MasPar MPPs. The MasPar RTJ2DFFT implementation
was simple and straight forward. When MIMD architecture guidelines are inap-
propriate for the SIMD machine, modifications to the guidelines have been made
that maintained the spirit of the RT_2DFFT benchmark. In spite of the differences
in architectures, each point in the original guidelines have been maintained—with
appropriate modifications. These modifications centered around the implementa-
tion of the data source and sink and the implementation differences that result
from the architecture differences between individual MIMD processing nodes ver-

sus a SIMD PE array.

MASPAR RT_2DFFT BENCHMARK IMPLEMENTATION

The SIMD architecture of the MasPar MPPs limited the options available when
implementing the RT_2DFFT benchmark. A SIMD architecture can only process
either a single synchronous problem or multiple synchronous problems simulta-

65

neously. The combination of the relatively straight forward synchronous, data
parallel software architecture of the MasPar with the flexibility of the supplied
library functions, contributed to the ease of implementing the MasPar RTJ2DFFT
benchmark. In particular, software engineering for the MasPar RT_2DFFT bench-
mark implementation has been greatly simplified by the use of MPL—a C-like
programming language. Once, the RT_2DFFT benchmark methodology was con-
ceptually ported to a synchronous, data parallel architecture, the implementation
was straightforward.

The MasPar library functions were sufficiently robust and flexible that we
developed a single implementation to handle the two latency cases: latency equal
to the period, and latency greater than the period. Each latency case has a
distinct solution. When latency must equal the period, all PE array resources
must be assigned to the task of processing a single input array. The RTJ2DFFT
benchmark requirement to find the smallest machine able to process the input
array within the specified inter-arrival time ensures that the entire PE array
participates in the processing. For the latency-greater-than-period case, the most
efficient data/processor mapping is to assign an entire row of an input array
to each processor by processing sufficient input arrays simultaneously to fill the
entire machine. There is no additional processing performance gain achievable by
placing multiple input array rows per processor or multiple tiers of input arrays
on the machine to fill available memory on the PE array. On the contrary, in
some instances the amount of required memory per processor element can be
reduced, effectively reducing the size, weight, power consumption, and cost of the
computer.

An important feature of the RT_2DFFT benchmark methodology is the ability
to examine performance predictability, regardless of the effects of the operating
system and other effects beyond the user's control. If there is a clear understanding
of predictability, it is possible to use computers with non-real-time operating sys-
tems for real-time processing. We found that when using the RT_2DFFT benchmark
implementation, it was possible to get very predictable results—as long as all user
activity on the PE array was limited to our benchmark. Our results show that
much of the measured variability occurred as a side-effect of collecting the timing
data that required an operating system call to the UFE processor. We illustrated
this in timing tests when we compared multiple fifteen minute program runs on
the MP-1. There was substantially more timing variability with clock insertions
for each of five program sections than when performing only a single global clock
insertion. Because parallel programs running on the MasPar MPP can be run

66

with essentially no interaction with the UFE, the MP-X architecture can provide
excellent predictability and consequently, excellent real-time performance.

Our RTJ2DFFT benchmark implementation tests show that the MasPar MP-1
and MP-2 can process 256 x 256, 512 x 512, and IK x IK single precision
complex input arrays within the one second inter-arrival time requirement. The
smallest machine capable of meeting the timing specification for the latency-equal-
period case varied from IK to 8K for the MP-1 while a IK MP-2 was able to
process each of the three input array sizes successfully. We were in fact unable to
process a 2K x 2K input array in the required inter-arrival time on either of the
MasPar machines that we used to test our RT_2DFFT implementation; however,
we anticipate that we should be able to process a 2K x 2K input array on an
8K processor MP-2 within the one second inter-arrival time requirement. We
have shown that the implementation for the latency-greater-than-period case has
reduced the measured periods, and in one instance, we could have reduced the
machine size by accepting increased latency.

We identified constraints on maximum problem size for two-dimensional ap-
plications with single precision complex data array elements and with output
streams as great as the input array stream. Some constraints are due to the
hardware architecture and some constraints are due to the computational capa-
bilities. Constraints on maximum PE memory impose a potential limitation on
input array sizes of 8K x 8K rows and columns. Furthermore, maximum IORAM
memory constraints reduce the maximum input array size to 4K x 4K rows and
columns, and maximum I/O subsystem bandwidth constraints further reduce the
maximum input array size to only 2K x 2K rows and columns.

Processing input arrays larger than 2K x 2K would not be possible on either
the MP-1 or MP-2 even if I/O subsystem bandwidth limitations are overcome,
assuming that we maintain the one second period requirement. We found that
as the number of rows in the input array are doubled, the number of processors
required to meet a constant timing requirement must increase by at least a factor of
four. While this in not unexpected when processing two-dimensional input arrays
for a two-dimensional FFT application, present MasPar processors are limited
to only 16K processors and consequently growth to larger input arrays would be
limited by the maximum size of the PE array. Given the trends apparent in the
data, at least a 32K processor machine or a system speedup of a factor of four
would be required to handle a 4K x 4K input array.

67

EXTENDING THE MASPAR RT_2DFFT BENCHMARK IMPLEMEN-
TATION

An important concern when developing the RT_2DFFT benchmark is the exten-
sibility of the benchmark to other applications and to other hardware, including
new versions of an architecture. We design and implement an algorithm on an
existing architecture; however, we must predict performance for future architec-
tures (Koester, 1995). Performance predictions for future architectures will help
determine whether or not to port larger applications to existing hardware or to
wait and look for performance improvements to make implementation of another
application feasible.

Our RT_2DFFT implementation was run on available MasPar MP-1 and MP-
2 MPPs, and we must consider the extensibility of this work to future SIMD
MPPS from MasPar. The basic MasPar MPP architecture has been relatively
unchanged since its introduction in 1990. The unusually long lifespan of the
MasPar MP-X series MPP technology is attributable to architecture scalability,
leveraging the best computer science technologies, adherence to standards, and
cost effective manufacturing techniques. MasPar is currently developing the MP-3;
although, there is little non-proprietary performance information available on this
new machine. It has been announced that the MP-3 parallel processing array
architecture will be similar to the previous MasPar MPPs, but will be designed to
be faster and eventually will be packaged for embedded applications in conjunction
with the Litton Corporation.

The MP-2 series saw increased processor performance by a factor of four over
the MP-1, although router-based network performance was not enhanced in the
MP-2. Our performance results illustrated that we were unable to get full benefit
of the increased processor performance, because communications capabilities did
not scale with processor performance. For parallel algorithm performance to scale
with respect to processor performance increases, interprocessor communications
performance must increase at least as much as processor performance. History
has shown that increases in processor performance have been easier to achieve
than increases in communications performance.

If both processor performance and the router-based communications network
were to see an increase in performance similar to the processor performance in-
crease between the MP-1 and MP-2 architectures—a factor of four—we would ex-
pect significant decreases in the size of machines required to perform the RT_2DFFT
benchmark. Given such a significant performance increase, even more complicated

68

applications like SAR processing could be performed within the specified input
array inter-arrival time. In addition, if the new machine had parallel external
access to the I/O subsystem, then the MasPar MP-3 could process larger in-
put arrays, with array size limitations imposed by memory limitations and not
I/O bandwidth. It might even be possible to perform two-dimensional FFTs on
8K x 8K input arrays.

DARPA has also funded MasPar to examine a scalable ensemble—multiple
MasPar PE arrays interconnected by extensions to the router-based communi-
cations system. A scalable ensemble MPP would be a hybrid processor that
combined MIMD and SIMD architectures. The MasPar RT_2DFFT benchmark
methodology and implementation would change significantly for the scalable en-
semble architecture. For a cluster of MasPar PE arrays interconnected by the
MasPar global router, separate programs could be implemented on each of the
individual PE arrays and data pipelined between the PE arrays. As a result,
the new RT_2DFFT implementation for this ensemble architecture would combine
features of both the RT_2DFFT MIMD and SIMD implementations.

The COTS MasPar architecture has strong potential for use as a real-time
processor; although, the presently available hardware only can meet the RT_2DFFT
benchmark requirements for a limited number of input array sizes due to system
performance limitations and I/O bottlenecks. Additional work on the MasPar
RT_2DFFT benchmark would be warranted for the MasPar MP-3 or the new scalable
ensemble architecture, if interprocessor communications performance is improved
commensurate with processor performance and if parallel external I/O capabilities
are developed. As a result, performance would scale and larger input arrays or
more complicated problems can be addressed in real-time on these new MasPar
architectures.

We emphasize that all the results apply to the RT_2DFFT benchmark spec-
ification given in appendix A. This benchmark specification maintains a one
second inter-arrival period independent of input array size. As such, it represents
a substantial real-time test of the underlying hardware and system software as
the input array size is increased. Any actual application that would require such
two-dimensional FFT processing, e.g., SAR, could have a longer inter-arrival time
and specific latency requirements. The parametric benchmarking techniques and
infrastructure described in this report could be easily adapted to assess the suit-
ability of the MasPar MP-X architecture for a particular target application once
the actual real-time requirements are specified.

69/70

LIST OF REFERENCES

Blank, T., January 1990, "The MasPar MP-1 Architecture," IEEE Computer

Architecture, pages 20-24.

Brown, C. P., M. I. Flanzbaum, R. A. Games, and J. D. Ramsdell, October
1994, Real-Time Embedded High Performance Computing: Application
Benchmarks, MTR 94B145, MITRE, Bedford, MA.

Brown, C. P., R. A. Games, and J. J. Vaccaro, July 1995, Real-Time Parallel
Software Design Case Study: Implementation of the RASSP SAR Benchmark on
the Intel Paragon, MTR95B95, MITRE, Bedford, MA.

Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, 1988,
Solving Problems on Concurrent Processors, Prentice Hall.

Fox, G. C, 1994, Software and Hardware Requirements for Some Applications of
Parallel Computing to Industrial Problems, SCCS 717, The Northeast Parallel
Architectures Center (NPAC), Syracuse University, Syracuse NY 13244-4100.
Available at
http://www.npac.syr.edu/techreports/html/0700/abs-0717.html.

Games, R. A., March 1996, Benchmarking Methodology for Real-Time Embedded
Scalable High Performance Computing, 96B10, MITRE, Bedford, MA.

Hwang, K. and F. A. Briggs, 1984, Computer Architecture and Parallel
Processing, McGraw Hill.

Koester, D. P., 1994, SuperComputing-94 — Networking Technologies Summary,
SCCS 708, The Northeast Parallel Architectures Center (NPAC), Syracuse
University, Syracuse NY 13244-4100. Available at
http://www.npac.syr.edu/techreports/html/0700/abs-0708.html.

 , October 1995, "Parallel Block-Diagonal-Bordered Sparse Linear
Solvers for Power System Applications," Ph.D. thesis, Syracuse University,
Syracuse University, Syracuse NY 13244-4100.

71

MasPar Computer Corp., November 1992, The Design of the MasPar MP-2: A
Cost Effective Massively Parallel Computer, MP/P-11.92, MasPar Computer
Corp., 749 North Mary Avenue, Sunnyvale CA 94086.

MasPar Data Display Library (MPDDL) Reference Manual, July 1992, 749
North Mary Avenue, Sunnyvale CA 94086: MasPar Computer Corp.

MasPar Image Processing Library (MPIPL) Reference Manual, July 1992, 749
North Mary Avenue, Sunnyvale CA 94086: MasPar Computer Corp.

MasPar Mathematics Library (MPIPL) Reference Manual, July 1992, 749 North
Mary Avenue, Sunnyvale CA 94086: MasPar Computer Corp.

MasPar Parallel Application Language (MPL), July 1993, 749 North Mary
Avenue, Sunnyvale CA 94086: MasPar Computer Corp.

MasPar HiPPI I/O Controller, June 1994, 749 North Mary Avenue, Sunnyvale
CA 94086: MasPar Computer Corp.

Pickard, K. T., 1995. Personal communication.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1986,
Numerical Recipes, New York, NY: Cambridge University Press.

Quinn, M. J., 1987, Designing Efficient Algorithms for Parallel Computers,
McGraw Hill.

Stone, H. S., 1987, High Performance Computer Architecture, 2nd Ed.,
Addison-Wesley.

Zuerndoerfer, B. and G. A. Shaw, 1994, "SAR Processing for RASSP
Application," In Proceedings of the 1st Annual RASSP Conference, ARPA,
pages 253-268.

72

APPENDIX A

RT_2DFFT: REAL-TIME SYMMETRIC TWO-DIMENSIONAL FFT
BENCHMARK SPECIFICATION

The RT_2DFFT benchmark was proposed in (Games, 1996) as a test of a pro-
posed benchmarking methodology for real-time embedded scalable high perfor-
mance computing. The two-dimensional FFT benchmark is a kernel commonly
used in synthetic aperture radar (SAR) processing, among other applications. In
this benchmark, the two-dimensional FFT is treated as a compact application
to illustrate the proposed real-time benchmarking methodology. The benchmark
assesses the parallel processor's ability to deliver high sustained utilization on
an FFT. It also assesses the performance impact of a distributed corner turn
global communications operation. This is particularly relevant as the problem
size increases and more distributed processing resources are required to meet the
real-time requirement (as in higher resolution and/or wider area SARs). The
RT_2DFFT benchmark specification consists of a benchmark specification, a timing
specification, a scalability study specification, and implementation guidelines.

Notation

In the following, the complex numbers are denoted by C. The set of vectors of
size n with entries in a set X is denoted by Xn; the set of two-dimensional input
arrays of size mxnis denoted by XmXn. For an input array A— {a;j} G XmXn,
the notation a^* denotes the ith row of A and a*j denotes the jth column of A.

Functional Specification

We assume the availability of an FFT algorithm, y = FFT(cc, FFTsize), where
x and y are complex vectors of size FFTsize and y is the discrete Fourier transform
(DFT) of x. See for instance (Press, 1986), page 381. For n a positive integer, the
RT_2DFFT benchmark applies the FFT to the rows of an n x n input matrix A to
form the intermediate matrix Y. The output matrix Z is then formed by applying
the FFT to the columns of Y. The functional specification of the RT_2DFFT
benchmark is given in Figure A-l. Single precision floating point processing is
assumed.

73

y = RT_2DFFT(A, n)
Input: n a positive integer
Input: A = {a{j} G CnXn

Auxiliary: Y = {yij} eC"x"

Output: Z = {zij} G Cnxn

Algorithm:
for i G {0,1,..., n - 1}, yt> = FFT(at>, n)
for ; G {0,1,..., n - 1}, zmj = FFT(y»,j, n)

Figure A-l. The RT_2DFFT Benchmark Functional Specification

Timing Specification

The timing specification of the RT_2DFFT benchmark is given in terms of a
periodic sequence of input matrices At, A2, A3,... Aj, Two requirements are
typical in these periodic applications: the period is the time interval between
successive input matrices, and the latency is the length of time required to process
a single instance A{, measured as the interval of time between when the matrix
Ai leaves the data source and the corresponding results arrive at the data sink.
This benchmark fixes the period at 1 second and considers two separate latency
cases:

Case 1: period = latency = 1 second

Case 2: period = 1 second, no constraint on latency

The 1 second period for n = 1024 or 2048 corresponds roughly to the com-
putational requirements of the SAR system described in (Zuerndoerfer, 1994). In
the RTJ2DFFT benchmark the timing specification is fixed for all problem sizes.

Scalability Study Specification

The scalability study for the RT_2DFFT benchmark increases the size of the
n x n input matrix, while the period and latency is kept fixed. The objective is to

74

Table A-l. Processing Rate and Memory Requirements for the
RT_2DFFT Benchmark

n Mflop/s Mbytes

256 5.2 0.5
512 23.6 2.0

1,024 104.9 8.0
2,048 461.4 32.0
4,096 2,013.3 128.0
8,196 8,724.2 512.0

16,384 37,581.0 2048.0

determine the minimum machine size that meets the real-time requirement. The
values of n to be considered are: 256, 512, 1024, 2048, 4096, 8192, and 16,384. Ta-
ble A-l shows the computational throughput requirements expressed in Mflop/s.
We assume an FFT of length n requires 5nlog2n floating point operations, so
that the total number of floating point operations for the RT_2DFFT benchmark is
10n2 log2 n. This requirement is common to both latency cases and is based on
the single period of 1 second. Table A-l also shows the memory requirements in
megabytes (Mbytes) to store one copy of the input matrix, assuming 8 bytes per
element (single precision floating point complex).

Implementation Guidelines

1. The input matrix must be stored originally on a source node in memory
that is not directly associated with the processors that implement the
RT_2DFFT benchmark. The matrix must be stored in row major or column
major form.

2. When establishing timing performance, the same matrix can be repeat-
edly input to the processors that implement the RT_2DFFT benchmark (to
avoid the need for disk I/O).

75

The results must be output to a sink node and stored in memory not
directly associated with the processors that implement the RTJ2DFFT
benchmark. The result matrix must be stored in row major or column
major form.

The source and sink nodes may be implemented on the same or different
processing nodes.

The processing latency for a problem instance is measured as follows.
A time stamp ts is calculated at the data source right before the input
data for this instance is sent from the source node. A second time stamp
tc is calculated at the data sink right after the corresponding results
are received by the sink node. The processing latency for this problem
instance is then (tc — ts). This requires a synchronized global clock if the
source and sink are on physically separated nodes. Period measurements
are calculated as the difference of successive values of tc corresponding
to successive problem instances. Latency and period measurements can
be calculated off-line from the time stamp data.

In the case that the input matrix (and output matrix) does not fit in
the memory of a single node, then multiple source and sink nodes are
necessary. The time stamp ts of a problem instance should occur before
any data is sent from the multiple sources. The processing of that instant
is considered completed when all sink nodes have received all their results.

A benchmark run to establish timing performance should last for at least
15 minutes to account for any operating system dropout problems.

The following information and statistics should be calculated for a single
benchmark run (during a post processing stage):

a. Histogram of period measurements. Maximum, average, and mini-
mum period. The benchmark is considered valid only if the maxi-
mum period observed is less than or equal to the period specifica-
tion: 1 second. This must be repeatable.

b. Histogram of latency measurements. Maximum, average, and min-
imum latency. The benchmark is considered valid only if the max-

76

imum latency observed is less than or equal to the latency specifi-
cation. This must be repeatable.

c. Some small number of initial problem instances can be ignored to
eliminate start-up anomalies, if present. If this is done then the
number of ignored instances should be stated.

9. Machine size is measured in terms of the number of processing nodes
used, not including processing nodes used to implement the source and
sink. Standard commercial-off-the-shelf hardware and system software
configurations should be used. If a machine supports multiple config-
urations (for example, different amounts of memory at the processing
nodes), then these different configurations must be itemized and bench-
marked separately. The size, weight, power, and price of each machine
should be determined and expressed as a function of machine size.

10. The maximum period for a benchmark run is used to determine the
sustained Mflop/s processing rate: 10n2 log2 nj(maximum period). This
value should be divided by the theoretical peak processing rate of the
size machine used in the processing to determine the sustained processing

utilization percentage.

11. The following scalability plots should be generated for each latency case:

a. Minimum machine size as a function of problem size.

b. Sustained processing utilization percentage as a function of problem

size.

77/78

APPENDIX B

MASPAR INDEX-BIT PERMUTATIONS

In this appendix, we discuss a set of MasPar subroutine calls that perform
certain internal communications called index-bit permutations. These routines
allow for a very efficient implementation of the two data rearrangements required
by the RT-2DFFT benchmark implementation. One rearrangement is the shift
needed to put the data in cut-and-stack form and the other rearrangement is the
data transpose used for the corner turn. We will describe the specifics of each of
these functions after we give an overview of the philosophy behind the index-bit

permutations.

Consider a plural data set where each PE contains a linear array of data of
some fixed length, which for simplicity we take to be a power of two. Let 2k be
the length and suppose that there are 2q PEs. Then every data element in the
plural set can be specified by a unique (q + k)-bit index:

PE bits Mem bits

(j3o,Pi,*..,pq-i] rn0,m1,*..,mk-i) (B" 1)

We are not concerned with the actual size of the data element, since the routines
can move data elements of any size in byte increments (e.g., in the RTJ2DFFT
benchmark implementation, a data element is a single precision complex using

eight bytes).

The goal of the index-bit permutations is to permute the data elements by
simple permutations of the bit representation. That is, we permute the bits in
the index given in equation B-l, say for example, by switching p0 with m0. The
data elements are then themselves permuted consistent with the permutation of
their indices. There are several options for permutations of the bit representation.
Some permutations only permute PE bits; others interchange PE bits with Mem

bits.

Cut-and-Stack

As we mentioned in the MasPar performance section, the fastest method for
reading data from the IORAM is to read a contiguous portion of the data onto
a PE and then to rearrange the data into the required cut-and-stack form. We
illustrate this mapping for a set of four PEs acting on a row of length 32; the data

79

are input as in the left matrix below and must be transformed to trie matrix on
the right:

0 8 16 24 0 12 3
1 9 17 25 4 5 6 7
2 10 18 26 8 9 10 11
3 11 19 27 12 13 14 15
4 12 20 28 "* 16 17 18 19
5 13 21 29 20 21 22 23
6 14 22 30 24 25 26 27
7 15 23 31 28 29 30 31

In this example there are 3 Mem bits, since the columns are length eight. The
number of PE bits could be any q > 2, but since only 4 PEs are used for a row,
only the lowest 2 PE bits are used for the given row. There are then five bits total
for the data in the row, say a,b,c,d,e (from lowest to highest). The higher two
bits d and e are the PE bits. We need to change

(d,e,p2,...,pq„1;a,b,c) to (a, b,p2,... ,p,_i; c,d, e).

If we ignore for the moment the p{ bits, then we see that we must change
(d,e,a,b,c) to (a,b,c,d,e). This is just a cyclic shift of (d,e,a,b,c) by three
to the right. The p{ bits are fixed and not permuted. The final result is that
we perform the same data rearrangement for every row of every two-dimensional
input array, because the index of the rows and arrays are expressed by the p{ bits.

There is a specific routine, called cshift_pm that is designed to do precisely
this mapping. We can perform the rearrangement of the data to cut-and-stack
form with just one call to this routine. This transformation is not required when
more than one tier of input arrays is processed, since only one PE is used per row
(so there are zero PE bits needed for the row index).

Corner Turns

The corner turn of a two-dimensional data array is conceptually similar to the
transformation used in the cut-and-stack mapping, but we require two index-bit
routines. For the corner turn, we start with data in cut-and-stack and consider
bits used to index rows of the input array (r{), columns of the input array (a),
and possibly any multiple input arrays (a,-). The data elements are specified by
the index

(r0,.. .,?-<_!, c0,... ,cs_!,a0, •• . ,a9_s_f_1;r/,. . .,rs_a),

80

where as always PE bits are given first, t is the number of PE bits used for a
single row, and s is the number of bits required for the data array size (i.e., we
process 2s x 2s data arrays). The corner turn performs a transpose of the data
that interchanges r; and c,-. That is, the final index is given by

(c0,... ,Cf_i,r0,. • • ,rs_i,a0, • • • ,ag_s_t_i;ct,... ,cs_i).

The first step to do the corner turn is to swap the Mem bits with the appro-
priate PE bits. This is done using the swap_pm subroutine and results going from
the starting index

(r0,. • •, rt_i, c0,..., c4_i, ct,..., cs_i, a0,. ■ ■, ag_s_t_i; rt,..., rs_i)

to an intermediate index

(r0,... ,rt_i,c0,..., ct_i,rt,...,rs_i,a0,... ,ag_s_t_i; Q,... ,cs_ij

by swapping the two indicated blocks of bits. The next step is just to exchange the
lower order r,- and q. This is done using the xchng_pp subroutine and transforms
the intermediate index

(r0,..., rt_i, c0,..., Ci_i, rt,..., rs_i, a0,..., ag_s_t_i; ci5..., cs_i)

to
(co,..., ct-i, r0, • • •, rt_i, rt,..., rs_i, a0,..., ag_s_f_i, ct,..., cs_ij

by exchanging the indicated blocks of bits. This last index is in the desired final
form. Notice that the a; bits are fixed and never permuted. This means that each
two-dimensional data array is transposed by itself. When more then one tier of
arrays is processed, we need to call the two subroutines separately for each tier.

81/ 82

APPENDIX C

MASPAR MP-1 RT_2DFFT BENCHMARK DATA

This appendix gives a complete set of data from the short ten-iteration runs
of the RT-2DFFT benchmark implementation on the MP-1 machine. Specifications
for the MP-1 machine are given in Table C-l. The MP-1 machine was made
available by NPAC at Syracuse University; the runs were made in September,
1995. A separate table is given for each software configured machine size; these
are Tables C-2 to C-6. The tables indicate limitations due to the capacity of the
IORAM; when there was insufficient IORAM capacity, only the time to perform
the 2D FFT processing is reported. All times are in milliseconds and are the
maximum time for the ten iterations after ignoring the initial iteration. The
range of times for the ten iterations were almost always 10-20 milliseconds.

The headings in these tables are as follows:

n The size of the input array, that is, n x n.

NA The number of input arrays processed simultaneously.

NT The number of tiers of input arrays.

Lat The total time needed to process the input arrays—the latency.

Per The time to process all of the input arrays divided by the number of

input arrays—the period.

Read The time to read from the IORAM to the PE array. An "—" signifies
that there was inadequate IORAM to provide both data source and sink.

FFTR The time to compute the ID FFTs on the rows of the input arrays.

CT The time to perform a corner turn on the data arrays.

FFTc The time to compute the ID FFTs on the columns of the data arrays.

Write The time to write from the PE array to the IORAM. An "—" signifies
that there was inadequate IORAM to provide both data source and sink.

83

Table C-l. Specifications of the MP-1 Machine

MP-1

Front-End DECstation
FEOS Ultrix V4.3

PE Array 16K = 128 x 128
ACU IMEM 1 Mbytes

ACU CMEM 1 Mbytes
PEMEM 64 Kbytes

IORAM Size 32 Mbytes

Table C-2. IK MasPar MP-1 Empirical Data

n NA NT Lat Per Read FFTR CT FFTc Write

256 1 1 282 282 78 56 31 59 70
2 1 559 280 161 129 39 133 134

4t 1 793 198 290 129 55 129 231
8 2 1579 197 565 250 106 247 451

16 4 3145 197 1118 486 222 474 887
32 8 6277 196 2223 958 430 949 1769

512 1 1 1094 1094 312 250 47 254 258
2t 1 1743 872 563 314 146 313 454
4 2 3465 866 1117 616 279 618 887
8 4 6922 866 2223 1212 543 1216 1769

IK It 1 3359 3359 1118 617 169 617 887
2 2 6711 3356 2220 1223 321 1224 1767

t Full tier of input arrays.

84

Table C-3. 2K MasPar MP-1 Empirical Data

n NA iVT Lat Per Read FFTfi CT FFTC Write

256 1 1 126 126 28 32 20 32 23

2 1 287 144 83 56 36 59 63

4 1 559 140 161 133 32 126 134

8t 1 793 99 285 129 59 129 231

16 2 1587 99 567 242 111 243 454

32 4 3149 98 1118 484 232 485 888

64 8 6301 98 2223 949 455 945 1767

512 1 1 593 593 163 133 59 137 137

2 1 1122 561 317 251 78 254 257
4t 1 1727 432 565 310 129 313 453

8 2 3441 430 1118 618 250 614 888

16 4 6865 429 2223 1215 488 1216 1770

IK 1 1 2341 2341 629 559 126 560 513

2t 1 3466 1733 1118 618 278 616 886

4 - 2 6930 1733 2219 1223 547 1223 1770

2K It 1 7539 7539 2305 1485 406 1484 1859

t Full tier of input arrays.

85

Table C-4. 4K MasPar MP-1 Empirical Data

n NA iVT Lat Per Read FFTfl CT FFTC Write

256 1 1 54 54 12 16 12 20 12
2 1 133 67 27 31 24 32 24
4 1 288 72 79 58 39 56 63
8 1 556 70 165 125 36 129 133

16* 1 1028 68 412 125 59 125 335
32 2 2036 64 804 246 113 242 665
64 4 4063 63 1599 485 232 484 1319

128 8 3376* 3376* — 950 454 947 —

512 1 1 302 302 78 63 36 62 67
2 1 607 302 160 134 70 137 138
4 1 1349 337 438 250 79 255 371
8+ 1 2180 273 806 314 133 314 664
16 2 4353 272 1601 614 250 614 1321
32 4 2941* 2941* — 1215 485 1212 —

IK 1 1 1411 1411 439 255 134 255 367
2 1 2829 1415 867 556 160 556 730

4t 1 4379 1095 1598 617 278 617 1321
8 2 3008* 3008* — 1223 544 1222 —

2K 1 1 5641 5641 1739 1109 276 1105 1453
2* 1 3523* 3523* — 1489 548 1486 —

* Full tier of input arrays.
* Two-dimensional FFT timing only.

86

Table C-5. 8K MasPar MP-1 Empirical Data

n NA 7Vr Lat Per Read FFTH CT FFTc Write

256 1 1 51 51 16 12 8 12 12
2 1 55 28 12 16 12 19 8
4 1 133 33 28 35 24 31 24
8 1 288 36 82 56 39 55 63

16 1 602 38 185 133 39 133 156
32* 1 1031 32 406 129 59 129 337
64 2 2047 32 806 239 134 243 661

128 4 1211* 1211* — 481 250 484 —

256 8 2408* 2408* — 949 489 949 —

512 1 1 134 134 27 36 19 35 25
2 1 314 157 83 63 43 63 63
4 1 645 161 191 129 67 136 160
8 1 1341 168 433 251 71 247 369

16+ 1 2187 137 806 314 134 314 666
32 2 1485* 1485* — 614 255 615 —

64 4 2949* 2949* — 1219 497 1215 —

IK 1 1 684 684 192 145 72 150 160
2 1 1418 709 438 254 149 254 367
4 1 2828 707 863 558 161 556 730
8t 1 1481* 1481* — 617 266 617 —

16 2 2976* 2976* — 1222 517 1223 —

2K 1 1 2969 2969 872 572 260 568 729
2 1 2516* 2516* — 1110 313 1107 —

4t 1 3524* 3524* — 1485 548 1483
"

* Full tier of input arrays.
* Two-dimensional FFT timing only.

87

Table C-6. 16K MasPar MP-1 Empirical Data

n NA NT Lat Per Read FFTÄ CT FFTc Write

256 1 1 40 40 12 12 8 12 8
2 1 50 25 12 12 8 12 12
4 1 60 15 12 16 15 16 12
8 1 133 17 28 36 23 35 24

16 1 289 18 79 55 39 55 63
32 1 605 19 185 133 39 133 152
64+ 1 1031 16 407 125 59 128 337
128 2 613* 613* — 243 133 243 —

512 1 1 86 86 19 24 12 23 20
2 1 137 69 24 36 23 35 24
4 1 312 78 81 62 43 63 65
8 1 642 80 191 134 70 137 157

16 1 1345 84 438 251 71 255 371
32+ 1 742* 742* — 315 133 313 —

IK 1 1 313 313 86 63 39 63 70
2 1 688 344 192 144 83 150 157
4 1 1418 355 438 253 148 254 367
8 1 1263* 1263* — 559 161 559 —

16+ 1 1481* 1481* — 617 266 613 —

2K 1 1 1500 1500 445 277 157 282 372
2 1 1411* 1411* — 571 287 570 —

4 1 2517* 2517* — 1111 311 1110 —

8+ 1 3520* 3520* — 1488 547 1488 —

+ Full tier of input arrays.
* Two-dimensional FFT timing only.

88

APPENDIX D

MASPAR MP-2 RTJ2DFFT BENCHMARK DATA

This appendix gives a complete set of data from the short ten-iteration runs of
the RTJ2DFFT benchmark implementation on the MP-2 machine. Specifications for
the MP-2 machine are given in Table D-l. The MP-2 machine was made available
by the MasPar Computing Corporation; the runs were made in September, 1995.
A separate table is given for each software configured machine size; these are
Tables D-2 to D-4. All times are in milliseconds and are the maximum time for
the ten iterations after ignoring the initial iteration. The range of times for the
ten iterations were almost always 1-6 milliseconds.

The headings in the tables are defined in appendix C.

Table D-l. Specifications of the MP-2 Machine

MP-2

Front-End Alpha Workstation
FEOS Digital UNIX (0SF1)

PE Array 4K = 64 x 64
ACU IMEM 4 Mbytes

ACU CMEM 512 Kbytes
PEMEM 64 Kbytes

IORAM Size 128 Mbytes

89

Table D-2. IK MasPar MP-2 Empirical Data

n NA iVT Lat Per Read FFTH CT FFTC Write

256 1 1 119 119 22 29 22 29 18
2 1 231 116 43 64 31 64 35

4t 1 219 55 72 27 41 27 58
8 2 436 55 140 55 78 55 113

16 4 866 54 278 111 155 111 228
32 8 1728 54 553 217 307 216 451

512 1 1 427 427 86 123 35 124 72
2t 1 510 255 139 77 111 78 113
4 2 1015 254 278 153 216 151 227
8 4 2026 253 553 301 433 300 450

IK It 1 910 908 289 136 120 136 240
2 2 1816 908 579 268 236 269 474

* Full tier of input arrays.

90

Table D-3. 2K MasPar MP-2 Empirical Data

n NA
iVT Lat Per Read FFTfi CT FFTc Write

256 1 1 67 67 13 17 12 17 11
2 1 123 62 22 29 28 29 18
4 1 225 56 43 64 26 64 35
8t 1 221 28 72 27 44 27 59
16 2 439 27 140 54 81 54 114
32 4 872 27 278 110 162 111 228
64 8 1743 27 553 216 321 216 450

512 1 1 249 249 46 63 50 63 36
2 1 451 226 85 121 61 122 73
4t 1 539 135 163 79 94 79 137
8 2 1072 134 328 152 185 152 269

16 4 2138 134 650 302 363 302 533

IK 1 1 964 964 195 259 94 261 165
2t 1 1071 536 328 137 216 138 269
4 2 2137 534 649 269 427 268 532

2K It 1 2202 2202 650 357 318 357 532

t Full tier of input arrays.

91

Table D-4. 4K MasPar MP-2 Empirical Data

n NA 7VT Lat Per Read FFTß CT FFTC Write

256 1 1 31 31 5 8 7 8 5
2 1 73 37 13 17 17 17 11
4 1 123 31 22 29 27 29 18
8 1 243 30 53 63 26 64 43

16+ 1 251 16 89 27 42 27 74
32 2 500 16 174 54 81 56 142
64 4 999 16 344 111 160 110 282

128 8 1991 16 687 215 321 215 561

512 1 1 131 131 23 32 26 32 20
2 1 272 136 54 64 55 63 46
4 1 483 121 101 122 60 123 087
8+ 1 608 76 202 78 93 79 170
16 2 1213 76 401 152 184 152 333
32 4 2419 76 799 303 363 301 664

IK 1 1 525 525 105 123 102 121 87
2 1 1061 531 232 261 120 261 199

4t 1 1212 303 401 137 216 136 334
8 2 2422 303 799 269 427 269 665

2K 1 1 2079 2079 466 503 219 503 398
2t 1 2589 1295 799 357 425 357 665

t Full tier of input arrays.

92

ACU
ATM
C2

COTS
DARPA
DEC
DFT
FFT
HiPPI
I/O
ITO
Mflop/s
MIMD
MIPS
MOIE
MPL
MPIPL
MPML
MPP
NPAC
OS
PE
RISC
RPC
SAR
SIMD
THAAD
TMD-GBR
UFE
VLSI
VME

GLOSSARY
Array Control Unit
Asynchronous Transfer Mode
command and control
commercial off-the-shelf
Defense Advanced Research Projects Agency
Digital Equipment Corporation
discrete Fourier transform
fast Fourier transform
High Performance Parallel Interface
input/output
Information Technology Office
millions of instructions per second
multiple-instruction stream, multiple-data stream
million of instructions per second
Mission Oriented Investigation and Experimentation
MasPar Parallel Application Language
MasPar image processing library
MasPar mathematics library
massively parallel processor
Northeast Parallel Architectures Center
operating system
processor element
reduced instruction set computer
Remote Procedure Call
synthetic aperture radar
single-instruction stream, single-data stream
Theater High Altitude Area Defense
Theater Missile Defense Ground Based Radar
UNIX front-end
very large scale integration
virtual memory expansion

«U.S. GOVERNMENT PRINTING OFFICE: 1996-509-127-47067

93

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

